
CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 5 Monday
Fall 2007 Anjuli Kannan

Introduction (0:00-2:00)

 In the news: iPhone software broken again!

 This is a good example of the constant struggle between those who make software and those

who try to crack software

 Notice that the adversary has advantage: the software developer has to think of and protect

against every possible bug; the hacker only has to find one

 This is partially a result of the nature of the language, C. We will see why this is true as we get

into pointers later today.

This Week’s Problem Set: The Game of Fifteen (2:00-9:30)

 make

o In the past, you would compile, for instance, hello.c by typing gcc hello.c at the

command line

o You might add in some extra stuff like gcc –o hello hello.c –lcs50

o In this week’s problem set, all of that stuff you normally type is encoded in the

command make

o You can type make find at the command line, and the computer will interpret that as
gcc –o find helpers.c find.c –lcs50

o You can also just type “make” at the command line and that will compile all the

necessary files

o This is because the make command has been defined in the Makefile, which has been

written for you

o You can take a look at the Makefile in your ps3 directory to see how the computer

interprets the make command

 Random number generation

o A computer cannot generate truly random numbers because it is a deterministic

machine.

o That is, given a particular input, it will always produce the same output

o It can’t come up with truly random data “off the top of its head”

o But we can write “pseudorandom” number generators, which produce sequences of

numbers that appear random

o That is, the sequence has no apparent pattern that would allow an observer to think of

the next number

o Furthermore, the generation of each new number in the sequence depends on a

function that operates on the previous number in the sequence. The first number

depends on the “seed” – an input that you must feed to it when you use it.

o This means that, as long as you use a new, unique seed, you will get a difference

sequence than you got the previous time

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 5 Monday
Fall 2007 Anjuli Kannan

o A common seed used is the current time (or time elapsed since some fixed point in the

past)

o In this week’s problem set we include a file generate.c which is a pseudorandom

number generator

 Your task in this weeks’ problem set is to implement the game of 15 that we handed out a few

weeks ago

o The game sits in the main function in what’s essentially an infinite loop waiting for the

user to provide a move

o When the user make a move, we pass in the tile number to a function move which

returns a Boolean indicating whether or not it is a legal move

o If the Boolean is false, the program informs the user. Either way, it returns to the start

of the loop

o On each pass, the program checks to see if the gameboard is in a winning position

 You’ll notice that we’ve only provided you with a framework, but you’ll have to fill in the holes

(i.e., write all the functions that we have left empty!)

How to Approach This Problem Set (9:30-12:30)

 With this problem set, you’re going to want to take baby steps

 With short programs like caesar.c, you could probably write the whole thing, compile, and then

debug. But with larger more complex programs, this is a very poor strategy because you will

end up with a broken program and no idea how to fix it.

 A good programming strategy is to get a basic thing working, test it, get it working, and then

repeat with another piece. Gradually put these small pieces together to build up a fully

functional program.

 For instance, with caesar.c, you might go through this sequence of versions

o Version 1: program that gets a single commandline argument, checks number of

arguments and quites

o Version 2: check that argument to make sure its numerical

o Version 3: ask the user for a string

o Version 4: iterate over the string and rotate them, not worrying about the modulo

arithmetic

o Version 5: work out the mathematical details

 This way, at each step you have something correct, even if very basic

 It is also easy to isolate problems

 Otherwise, if you write the whole program and compile, you (a) will have errors all over the

place and (b) will have no idea where the errors are

Counting in Hexadecimal (12:30-

 Numbers in hexadecimal are in base 16

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 5 Monday
Fall 2007 Anjuli Kannan

 We use 16 digits to represent numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f

 Using a single digit, then, we can count up to the decimal number 15

 If you ever see in a program 0x followed by a number, this tells the compiler that what follows is

a hexadecimal number

 int x = 0xa means we want to put the decimal number 10 into the variable x

 There is a nice correspondence between hex numbers and binary numbers

 Recall that we need 4 bits to represent 16 possible digits

 So the 16 binary digits correspond to the 16 possible 4-bit numbers:

o 0  0000

o 1  0001

o e  15  1110

o f  16  1111

 This means that something like 0xff simply refers to 1111 1111 in binary, or 255 in decimal

 So we can use hex to represent large numbers more compactly in a program

 For instance, we could represent 232 – 1, we know that we just want 32 bits worth of 1’s, which

can be nicely written as 0xffffffff

 Hex will also be used to represent color codes in HTML!

Pointers (18:00-30:00)

 Remember buggy3.c?

int

main(int argc, char * argv[])

{

 int x = 1;

 int y = 2;

 swap(x, y);

}

void

swap(int a, int b)

{

 int tmp;

 tmp = a;

 a = b;

 b = tmp;

}

 It was supposed to swap the values in the variables x and y, but it didn’t work

 Why? Because of variable scope.

 When we pass x and y to the swap function we only pass their values. The swap function then

makes copies of these variable. The copies have the same values but different locations in

memory from x and y.

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 5 Monday
Fall 2007 Anjuli Kannan

 So the function properly swaps a and b, but as soon as the function is closed, those copies are

gone

 The solution? Pass the variable itself—not a copy—to the function.

 We do this by passing the swap function a “pointer” to the variable, rather than simply its value

 This is called passing by reference.

 Observe a new version of the function swap(), contained in swap.c:

void

swap(int *a, int *b)

{

 int tmp;

 tmp = *a;

 *a = *b;

 *b = tmp;

}

 int *a and int *b are pointers. They are variables which “point” to the memory locations of a

and b.

 This means that, rather than telling swap the values of a and b, we are telling it where in

memory to find the two integers. That way, it can access them directly and perform a swap.

 But now that a and b are integer pointer variables, we can’t swap their values. This is because

their values are actually memory addresses.

 Instead, we want to tell the computer to swap the values located at the memory locations to

which a and b point.

 To accomplish this, we use the dereferencing operator *

 When we put * before a variable which is itself a pointer, the resulting meaning is “the value

located at the address stored in”

 So tmp = *a means, “go to the address stored in a, fetch that value, and put it in tmp”

 *a = *b means “go the address stored in b, fetch that value, and put it at the address pointed to

by b”

 Finally, *b = tmp means, “put the value tmp in the address pointed to by b”

 But if addresses are what we need, how do we pass them to the function?

 Take a look at the main routine from swap.c:

int

main(int argc, char * argv[])

{

 int x = 1;

 int y = 2;

 swap(&x, &y);

}

 &x means “the address of x”

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 5 Monday
Fall 2007 Anjuli Kannan

 In this main routine, we pass swap() the addresses of x and y, rather than their values as before

 Recall the stack. At the bottom is a chunk of memory for main. In the chunk of memory are two

variables, x and y. Suppose they have addresses 0x0 and 0x4. These variables get the values 1

and 2.

main()

0x0 0x4

int x

 1

int y

 2

 (Why are the memory addresses separated by 4? Because an int is 32 bits or 4 bytes)

 Suppose we are running buggy3.c (passing by value). When main calls swap, swap gets a new

chunk of memory above main. Within this chunk of memory it makes two varariables called a

and b. These variables get the values 1 and 2.

swap()

int a

 1

int b

 2

main()

0x0 0x4

int x

 1

int y

 2

 We perform swap as planned:

swap()

int a

 2

int b

 1

int tmp

 1

main()

0x0 0x4

int x

 1

int y

 2

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 5 Monday
Fall 2007 Anjuli Kannan

 But when the function closes, it gets popped off the stack and a and b are gone. x and y have

their same from before values.

main()

0x0 0x4

int x

 1

int y

 2

 Now suppose we run swap.c (passing by reference). This time when we call swap, we pass it the

addresses of x and y. The variables a and b get these addresses:

swap()

int * a

 0x0

int * b

 0x4

int tmp

main()

0x0 0x4

int x

 1

int y

 2

 When we perform the swap, we follow those addresses and swap the values contained in them.

swap()

int * a

 0x0

int * b

 0x4

int tmp

 1

main()

0x0 0x4

int x

 2

int y

 1

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 5 Monday
Fall 2007 Anjuli Kannan

 Then, when swap closes, it gets popped off the stack and a and b disappear, but our swap has

been achieved:

main()

0x0 0x4

int x

 2

int y

 1

GDB (30:00-34:00)

 To demonstrate, let’s run this through gdb

 As usual, we can print the values of x, y to get 1,2,

 Now, we can also type print &x (or, in shorthand, p &x) to get the address of x: 0xbfc32220

 (It’s a bit bigger than 0x0 because the computer’s already stored a bunch of stuff in RAM)

Checking Pointers (34:00-39:30)

 As you’ve already seen, we can get seg faults if we touch memory that doesn’t belong to us

 When we’re dealing with pointers, we will get seg faults if we end up with pointers that are

invalid

 When the swap function follows the pointers a and b, it is taking a leap of faith that those

pointers are valid. If they’re not, this could result in a seg fault.

 For instance, suppose we declared x and y as pointers in main. Notice that we can do this using

t he following syntax:
int * x;

int * y;

 Then we pass them to swap by calling swap(x, y). Notice that we don’t’ pass the address of x

and y because x and y are already pointers.

 Now swap gets these pointers, but they haven’t been initialized! Who knows what they might

contain! Since we didn’t initialize them, they might contain addresses to memory locations we

don’t want accessed. This gives hackers a way to access, alter, and maybe even insert own

program into parts of memory.

 So, as a convention, we initialize pointers to NULL when we declare them.

 Then, when we read them into functions, or get them back from functions, we check to make

sure they are not equal to NULL.

 So we would declare them in main as

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 5 Monday
Fall 2007 Anjuli Kannan

Int * x = NULL;

int * y = NULL;

 Then we’d pass them to this improved version of swap from swap1.c that checks to see if the

pointers are NULL before trying to access them:

void

swap(int *a, int *b)

{

 if (a ! = NULL && b != NULL) {

 int tmp;

 tmp = *a;

 *a = *b;

 *b = tmp;

 }

}

Some Pointer Illustrations (39:30-45:30)

 Check out hwostuffworks.com for some sweet visual representations of pointers. We examine a

few here.

 What’s going on in this one?

 Essentially, this means that if we write those lines of code, we get two boxes in memory with

unknown content, and one location in memory pointing to who-knows-what

 What about this one?

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 5 Monday
Fall 2007 Anjuli Kannan

 This just means we’re taking the address of i and storing it in p, thus making p “point” to i.

 Finally, *p = 5 just means follow p’s arrow, and put the value 5 there:

