
Pbzchgre Fpvrapr 50: Vagebqhpgvba gb Pbzchgre Fpvrapr V
Uneineq Pbyyrtr

Snyy 2008

0 < 7

Ceboyrz Frg 2: Pelcgb

qhr ol 7:00 C.Z. ba Sevqnl, 10 Bpgbore 2008

Or fher gung lbhe pbqr vf gubebhtuyl pbzzragrq
gb fhpu na rkgrag gung yvarf’ shapgvbanyvgl vf nccnerag sebz pbzzragf nybar.

Tbnyf.

• Orggre npdhnvag lbh jvgu shapgvbaf naq yvoenevrf.
• Nyybj lbh gb qnooyr va pelcgbtencul.

Erpbzzraqrq Ernqvat.

• Frpgvbaf 11 – 14 naq 39 bs uggc://jjj.ubjfghssjbexf.pbz/p.ugz.
• Puncgref 6, 7, 10, 17, 19, 21, 22, 30, naq 32 bs Nofbyhgr Ortvaare’f Thvqr gb P.
• Puncgref 7, 8, naq 10 bs Cebtenzzvat va P.

Pbzchgre Fpvrapr 50: Vagebqhpgvba gb Pbzchgre Fpvrapr V
Uneineq Pbyyrtr

Snyy 2008

1 < 7

LOL

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

0 < 7

Problem Set 2: Crypto

due by 7:00 P.M. on Friday, 10 October 2008

Be sure that your code is thoroughly commented
to such an extent that lines’ functionality is apparent from comments alone.

Goals.

• Better acquaint you with functions and libraries.
• Allow you to dabble in cryptography.

Recommended Reading.

• Sections 11 – 14 and 39 of http://www.howstuffworks.com/c.htm.
• Chapters 6, 7, 10, 17, 19, 21, 22, 30, and 32 of Absolute Beginner’s Guide to C.
• Chapters 7, 8, and 10 of Programming in C.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

1 < 7

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed (e.g., by some problem set or the final project). Viewing or copying
another individual’s work (even if left by a printer, stored in an executable directory, or accidentally
shared in the course’s virtual terminal room) or lifting material from a book, magazine, website, or other
source—even in part—and presenting it as your own constitutes academic dishonesty, as does showing
or giving your work, even in part, to another student.

Similarly is dual submission academic dishonesty: you may not submit the same or similar work to this
course that you have submitted or will submit to another. Moreover, submission of any work that you
intend to use outside of the course (e.g., for a job) must be approved by the staff.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the staff.

You may even turn to the Web for instruction beyond the course’s lectures and sections, for references,
and for solutions to technical difficulties, but not for outright solutions to problems on problem sets or
your own final project. However, failure to cite (as with comments) the origin of any code or technique
that you do discover outside of the course’s lectures and sections (even while respecting these
constraints) and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly.

Grades.

Your work on this problem set will be evaluated along three primary axes.

Correctness. To what extent is your code consistent with our specifications and free of bugs?
Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

2 < 7

Getting Started.

0. For this problem set, we’re again going to have you use nice.fas.harvard.edu.1 SSH to

nice.fas.harvard.edu, create a directory called pset2 in your ~/cs50/ directory, and then
navigate your way to that directory. (Remember how?) All of the work that you do for this
problem set must ultimately reside in this directory for submission.

 Your prompt should now resemble the below.

 username@nice (~/cs50/pset2):

1. Surf on over to the course’s website and follow the link to the course’s Bulletin Board; you may be

prompted to log in. Take a look around!

 Henceforth, consider the course’s bulletin board the place to turn to anytime you have questions.

Not only can you post questions of your own, you can also search for or browse answers to
questions already asked by others.

 It is expected, of course, that you respect the course’s policies on academic honesty. Posting

snippets of code about which you have questions is generally fine. Posting entire programs, even
if broken, is definitely not. If in doubt, simply email help@cs50.net with your question instead,
particularly if you need to show us most or all of your code. But the more questions you ask
publicly, the more others will benefit as well!

 Lest you feel uncomfortable posting, know that students’ posts to the course’s bulletin board are

anonymized. Only the staff, not fellow students, will know who you are!

Let’s Warm Up with a Song.

2. Recall the following song from childhood. (Mine, at least.)

This old man, he played one
He played knick-knack on my thumb
Knick-knack paddywhack, give your dog a bone
This old man came rolling home

This old man, he played two
He played knick-knack on my shoe
Knick-knack paddywhack, give your dog a bone
This old man came rolling home

This old man, he played three
He played knick-knack on my knee
Knick-knack paddywhack, give your dog a bone
This old man came rolling home

1 Note that the Hacker Edition of this problem set has students instead SSH to hacker2.cs50.net, a prototype of our new
cluster “in the cloud.” Don’t tell them, but they’re our guinea pigs beta testers this week!

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

3 < 7

This old man, he played four
He played knick-knack on my door
Knick-knack paddywhack, give your dog a bone
This old man came rolling home

This old man, he played five
He played knick-knack on my hive
Knick-knack paddywhack, give your dog a bone
This old man came rolling home

This old man, he played six
He played knick-knack on my sticks
Knick-knack paddywhack, give your dog a bone
This old man came rolling home

This old man, he played seven
He played knick-knack up in heaven
Knick-knack paddywhack, give your dog a bone
This old man came rolling home

This old man, he played eight
He played knick-knack on my gate
Knick-knack paddywhack, give your dog a bone
This old man came rolling home

This old man, he played nine
He played knick-knack on my spine
Knick-knack paddywhack, give your dog a bone
This old man came rolling home

This old man, he played ten
He played knick-knack once again
Knick-knack paddywhack, give your dog a bone
This old man came rolling home

Oddly enough, the lyrics to this song don’t seem to be standardized. In fact, if you’d like to be
overwhelmed with variations, search for some with Google. And then stop procrastinating.

Your first challenge this week is to write, in oldman.c, a program that prints, verbatim, the above
version of “This Old Man.”

Notice, though, the repetition in this song’s verses. Clearly your program should make use of
some sort of loop to generate repeated lyrics. And perhaps there’s some way to store all those
numbers in an array for easy access. Or perhaps you’d prefer to use some conditions, perhaps
switch. Hmm...

There are, as you may be increasingly aware, many ways to solve problems like this one. Pick an
approach, implement it, test it, then go back and see if you can improve it before moving on!
Ultimately, not only should your code be correct (i.e., work right), it should also manifest good
design and good style.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

4 < 7

Style is easy. Ask yourself questions like these: Is my code well commented, without being
excessively so? Is my code “pretty-printed” (i.e., consistently indented and no wider than 80
characters across)? Are my variables aptly named?

As for design, ask yourself questions like these: Is my code straightforward to read? Am I wasting
CPU cycles unnecessarily? Is my code more complicated than it need be to get this job done?

Consider yourself done with this problem when you feel there’s no more room for improvement!

 If you’d like to play with the staff’s own implementation of oldman on nice.fas.harvard.edu,
you may execute the below.

 ~cs50/pub/solutions/pset2/oldman

Hail, Caesar!

3. Your next challenge this week is to write, in caesar.c, a program that encrypts messages using

Caesar’s cipher. Your program must accept a single command-line argument: a non-negative
integer, k. If your program is executed without any command-line arguments, with more than one
command-line argument, or with one command-line argument that contains any characters other
than '0' through '9', your program should complain and exit immediately, with main returning any
non-zero int (thereby signifying an error that our own tests can detect). Otherwise, your
program must proceed to prompt the user for a string of plaintext and then output that text with
each alphabetical character “rotated” by k positions; non-alphabetical characters should be
outputted unchanged. After outputting this ciphertext, your program should exit, with main
returning 0.

 Although there exist only 26 letters in the English alphabet, you may not assume that k will be less

than or equal to 26; your program should work for all non-negative integral values of k less than
231. Even if k is greater than 26, alphabetical characters in your program’s input should remain
alphabetical characters in your program’s output. For instance, if k is 27, 'A' should not become
'[', even though '[' is 27 positions away from 'A' in ASCII; 'A' should become 'B', since 27 modulo 26
is 1. In other words, values like k = 1 and k = 27 are effectively equivalent.

 Your program must preserve case: capitalized letters, though rotated, must remain capitalized

letters; lowercase letters, though rotated, must remain lowercase letters.

 So that we can automate some tests of your code, your program must behave per the below;

highlighted in bold are some sample inputs.

 username@nice (~/cs50/pset2): caesar 13
 Be sure to drink your Ovaltine!
 Or fher gb qevax lbhe Binygvar!

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

5 < 7

 So that you don’t reinvent the wheel, do scour

 http://www.cppreference.com/wiki/c/string/start

 for any functions that might be of assistance to you. As will be often the case, there is more than

one way to solve the problem at hand. But know that isdigit and atoi might prove
particularly good friends. You should probably dig up Week 0’s ASCII chart or check out
http://asciitable.com/ itself. And best not to forget about an operator like %.

 If you’d like to play with the staff’s own implementation of caesar on nice.fas.harvard.edu,

you may execute the below.

 ~cs50/pub/solutions/pset2/caesar

Parlez-vous français?

4. Well that last cipher was hardly secure. Let’s implement a more sophisticated algorithm.

Needless to say, it’s French. Your final challenge this week is to write, in vigenere.c, a program
that encrypts messages using Vigenère’s cipher. This program must accept a single command-line
argument: a keyword, k, composed entirely of alphabetical characters. If your program is
executed without any command-line arguments, with more than one command-line argument, or
with one command-line argument that contains any non-alphabetical character, your program
should complain and exit immediately, with main returning any non-zero int (thereby signifying
an error that our own tests can detect). Otherwise, your program must proceed to prompt the
user for a string of plaintext, p, which it must then encrypt according to Vigenère’s cipher with k,
ultimately printing the result and exiting, with main returning 0.

 As for the characters in k, you must treat 'A' and 'a' as 0, 'B' and 'b' as 1, . . . , and 'Z' and 'z' as 25,

just as we did in lecture. In addition, your program must only apply Vigenère’s cipher to a
character in p if that character is a letter. All other characters (numbers, symbols, spaces,
punctuation marks, etc.) must be outputted unchanged. Moreover, if your code is about to apply
the i th character of k to the j th character of p, but the latter proves to be a non-alphabetical
character, you must wait to apply that i th character of k to the next alphabetical character in p;
you must not yet advance to the next character in k. Finally, your program must preserve the case
of each letter in p.

 So that we can automate some tests of your code, your program must behave per the below;

highlighted in bold are some sample inputs.

 username@nice (~/cs50/pset2): vigenere FOOBAR
 HELLO, WORLD
 MSZMO, NTFZE

 How to test your program, besides predicting what it should output, given some input? Well,

recall that we’re nice people. And so we’ve written a program called devigenere that also takes

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

6 < 7

one and only one command-line argument (a keyword) but whose job is to take ciphertext as
input and produce plaintext as output.

 To use our program, execute

 ~cs50/pub/tests/pset2/devigenere k

 at your prompt, where k is some keyword. Presumably you’ll want to paste your program’s

output as input to our program; be sure, of course, to use the same key.

 If you’d like to play with the staff’s own implementation of vigenere on

nice.fas.harvard.edu, you may execute the below.

 ~cs50/pub/solutions/pset2/vigenere

Submitting Your Work.

5. Ensure that your work is in ~/cs50/pset2/. Submit your work by executing the command

below.

 cs50submit pset2

 Thereafter, follow any on-screen instructions until you receive visual confirmation of your work’s

successful submission. You will also receive a “receipt” via email to your FAS account, which you
should retain until term’s end. You may re-submit as many times as you’d like; each resubmission
will overwrite any previous submission. But take care not to re-submit after the problem set’s
deadline, as only your latest submission’s timestamp is retained.

