
Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

0 < 17

Problem Set 4: 数独

due by 7:00 P.M. on Friday, 24 October 2008

Goals.

• Learn to use ncurses, a library for GUIs.
• Design and implement larger pieces of software.
• Master sudoku.

Recommended Reading.

• Sections 1 – 13 of http://tldp.org/HOWTO/NCURSES-Programming-HOWTO/.

image from http://xkcd.com/74/

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

1 < 17

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed (e.g., by some problem set or the final project). Viewing or copying
another individual’s work (even if left by a printer, stored in an executable directory, or accidentally
shared in the course’s virtual terminal room) or lifting material from a book, magazine, website, or other
source—even in part—and presenting it as your own constitutes academic dishonesty, as does showing
or giving your work, even in part, to another student.

Similarly is dual submission academic dishonesty: you may not submit the same or similar work to this
course that you have submitted or will submit to another. Moreover, submission of any work that you
intend to use outside of the course (e.g., for a job) must be approved by the staff.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the staff.

You may even turn to the Web for instruction beyond the course’s lectures and sections, for references,
and for solutions to technical difficulties, but not for outright solutions to problems on problem sets or
your own final project. However, failure to cite (as with comments) the origin of any code or technique
that you do discover outside of the course’s lectures and sections (even while respecting these
constraints) and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly.

Grades.

Your work on this problem set will be evaluated along three primary axes.

Correctness. To what extent is your code consistent with our specifications and free of bugs?
Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

2 < 17

Getting Started (in teh Cloud).

0. For this problem set, we’re going to have you use cloud.cs50.net, our new cluster “in the

cloud,” instead of nice.fas.harvard.edu.

 Thanks to Amazon’s Elastic Compute Cloud (EC2), we’re in the process of replacing the physical

servers on which the course has relied for years (i.e., nice.fas.harvard.edu) with “virtual
machines” owned by Amazon but controlled by us.

 If unfamiliar with virtual machines, head on over to Wikipedia for a few minutes:

 http://en.wikipedia.org/wiki/Virtual_machine

 And also read up on cloud computing itself:

 http://en.wikipedia.org/wiki/Cloud_computing

 Then read up on the specific cloud that you’re about to be in:

 http://aws.amazon.com/ec2/

 Truth be told, we’re quite excited by what we’ll be able to do this semester with all this

technology. Not only will EC2 allow the course to grow and shrink its infrastructure as problem
sets demand, it will also enable us, toward term’s end, to provide some students with virtual
machines of their own on which they have “root” (i.e., administrator) access for their final
projects. All this for just $0.10 per hour. Not bad!

 Much like you have an account on nice.fas.harvard.edu, you’re about to have an account on

cloud.cs50.net too. For simplicity, your username on cloud.cs50.net will be identical to
your FAS username, but realize that they are different accounts (with different home directories).
If you change your password on one, it will not change on the other. If you edit some file on one,
it will not change on the other. Functionally, though, you should find cloud.cs50.net to be
quite similar to nice.fas.harvard.edu.

 Even though we’ve been beta-testing the cluster on those who tackled the Hacker Editions of

Problem Sets 2 and 3, we do hope you’ll forgive if any technical difficulties sneak up on us this
week! Glenn, Keito, and I (the course’s sysadmins) will be watching the course’s bulletin board
constantly, as we’re eager for feedback, particularly if things break.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

3 < 17

 If curious, here’s a sketch of what you’re about to try out!

1. Head on over to

 http://cs50.net/me/

 to find out your password on cloud.cs50.net. Lest you run into a chicken-and-egg problem,

you’ll want to log into the course’s website using your FAS username and password when
prompted. Once you know your initial password on cloud.cs50.net, you can start logging into
the course’s website with it or with your FAS password.

2. Now go ahead and actually SSH to cloud.cs50.net (much like you would to

nice.fas.harvard.edu), create a directory called pset4 in your brand-new home directory,
and then navigate your way to ~/pset4/. (Remember how?) All of the work that you do for this
problem set should reside in this directory so that we know where to look if we need lend you a

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

4 < 17

hand. No need to put pset4/ in a ~/cs50/ subdirectory like you did on
nice.fas.harvard.edu. We know it’s for 50!

 Your prompt should now resemble the below.

 username@cs50.net (~/pset4):

 If you’d like to change your password, execute

 passwd

 at your prompt. When prompted for your login(LDAP) password, provide your current

(i.e., initial) password for the cloud. You’ll then be prompted up to four times for your new
password: enter your new password exactly the same all four times.

 Now go ahead and execute the command below.

 cp ~cs50/pub/distributions/pset4/* ~/pset4/

 That command will copy the distribution code in the staff’s pset4/ directory into your own

~/pset4/ directory. Navigate your way to your copy by executing the command below.

 cd ~/pset4/

 If you list the contents of your current working directory, you should see the below. If you don’t,

don’t hesitate to ask the staff for assistance.

 l33t.bin Makefile n00b.bin sudoku.c sudoku.h

 Well those look like fun!

store.cs50.net.

3. So, believe it or not, we’ve decided to get on that Internet and set up a shop.1 Debuting soon at

http://store.cs50.net/ will be CS 50 merchandise, including t-shirts and more, thanks to
CafePress.com.2 But we need help with designs.3 Best to keep your design’s focus on 50 and not
on Harvard itself, as there are a few policies:

 http://provost.harvard.edu/policies_guidelines/names_insignias.php

1 That’s so us, isn’t it.
2 Who wouldn’t want to wear a t-shirt that says I SURVIVED CS50 or, better yet, PWNED BY CS 50?
3 Aaron is all out of lolcansus.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

5 < 17

 CafePress.com will let us put JPEGs on a whole bunch of merchandise, provided your design
adheres to the requirements here:

 http://www.cafepress.com/cp/info/sell/images/images_onesize

 So! If you would like to submit a possible design for some merchandise, email a 2000px by 2000px

JPEG (i.e., 10" by 10" at 200 DPI) to store@cs50.net by this problem set’s deadline!

The numbers must be single.

4. You’re about to get addicted to homework.

5. Much like I catch on to Internet memes two years after they’re funny, similarly did I catch on to

Sudoku about two years after it became hugely popular in this country, at which point I lost a
week of my life playing it constantly on my BlackBerry. Your turn!

 Much like the Game of Fifteen, Sudoku is a game of logic involving numbers. But it’s a great deal

more fun. Consider the puzzle below.

1 3 4 5

 6 8

 5 6 3

 1 6 5 8 9

 3 7 5

9 6 2 1 3

6 8 2

3 5

2 1 9 7

 The object of Sudoku is to fill this 9×9 grid in such a way that each column, each row, and each of

the nine 3×3 boxes therein contain each of the numbers 1 through 9 exactly once. A whole bunch
of strategies exist, but the general idea is to figure out iteratively what numbers could go where.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

6 < 17

 For instance, let’s home in on one of the 3×3 boxes that already has a lot of numbers and work the
ol’ process of elimination. How about the box in the middle, highlighted below.

1 3 4 5

 6 8

 5 6 3

 1 6 5 8 9

 3 7 5

9 6 2 1 3

6 8 2

3 5

2 1 9 7

 Let’s see, that box already has a 1, a 2, but no 3. Where could we put 3? Well, 3 can’t go in that

box’s bottom row, since the box to the right already has a 3 in that row. And 3 can’t go on either
side of the 7, since the box to the left already has a 3 in that row. Aha! It must be that 3 belongs
in that box’s top row, in which case there’s only one place to put it! And so we fill in that spot
with a 3, per the below.

1 3 4 5

 6 8

 5 6 3

 1 6 3 5 8 9

 3 7 5

9 6 2 1 3

6 8 2

3 5

2 1 9 7

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

7 < 17

 Let’s try another trick now. Rather than figure out where a number can go, let’s figure out where
a number cannot! Let’s home in on 9. Highlighted in gray now are all of the spots that 9 cannot
go, either because there’s already another number there or because there’s already a 9 in the
highlighted row, column, or box, per the below.

1 3 4 5

 6 8

 5 6 3

 1 6 3 5 8 9

 3 7 5

9 6 2 1 3

6 8 2

3 5

2 1 9 7

 Well, look at that! Looks like we’ve found a home for 9 within that box in the middle because

there’s only one place it can possibly go, per the below.

1 3 4 5

 6 8

 5 6 3

 1 6 3 5 8 9

 3 9 7 5

9 6 2 1 3

6 8 2

3 5

2 1 9 7

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

8 < 17

 Rinse, wash, and repeat these sorts of tricks enough times, and (assuming no PEBPAC) we’ll end
up with the solution below.4

1 6 8 3 4 2 7 9 5

5 3 2 7 9 6 1 4 8

7 9 4 1 5 8 2 6 3

4 7 1 6 3 5 8 2 9

8 2 3 9 7 4 5 1 6

9 5 6 2 8 1 3 7 4

6 8 7 4 2 3 9 5 1

3 1 9 5 6 7 4 8 2

2 4 5 8 1 9 6 3 7

 If still not quite clear on how the game is played, feel free to turn to the Wikipedia.

 http://en.wikipedia.org/wiki/Sudoku

 And if interested for your own edification in the mathematics and algorithmics behind the game,

you might also find these articles of interest:

 http://en.wikipedia.org/wiki/Mathematics_of_Sudoku
 http://en.wikipedia.org/wiki/Algorithmics_of_sudoku

6. Just for fun, we’ve included a whole bunch of puzzles (and solutions) at this document’s end. And

if you start finding yourself particularly addicted, odds are an implementation of sudoku exists for
your mobile phone!

7. Alright, now the real fun begins. You’re about to implement (most of) Sudoku in C.

 Much like we provided you with some code for the Game of Fifteen, similarly have we provided

you with a skeleton for Sudoku. Whereas Problem Set 3 relied on ANSI escape sequences to
implement the Game of Fifteen’s “graphics,” though, this problem set introduces a library called
“ncurses” (formerly called “curses”) that will provide your implementation of Sudoku with a nicer
GUI (graphical user interface). To be sure, your program won’t look like Mac OS or Windows, but
it should look sexier than that Game of Fifteen!5 Not only does ncurses make it pretty easy to
integrate colors into a program (and even dialogs and menus), it also allows you to treat your
terminal window as a grid of chars, any one of which can be updated without affecting the
others. That sort of feature is perfect for a game like Sudoku, as you’ll be able to add numbers to
the game’s board one at a time without having to re-generate the whole screen after each move
(as you did with printf for the Game of Fifteen).

4 The second ‘P’ stands for “puzzle,” and you’re in the chair.
5 Shuttleboy, for instance, uses ncurses. And he sure looks good.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

9 < 17

 Now, a typical terminal window is 80 characters wide by 24 characters tall (i.e., 80×24), and
ncurses addresses those characters by way of (y, x) coordinates, whereby (0, 0) refers to your
window’s top-left corner, (0, 79) refers to your window’s top-right corner, (23, 0) refers to your
window’s bottom-left corner, and (23, 79) refers to your window’s bottom-right corner.6 Even if
your window boasts dimensions smaller or larger than these, the idea is the same. When it comes
time to fill in a blank with respect to Sudoku, you’ll simply update the char at some (y, x)
coordinate.

 Now, how about that skeleton. Essentially, we’ve implemented an aesthetic framework for the

game so that you can focus on the more interesting parts: namely, the game’s features. In fact,
we’ve written the code (and comments) in such a way that you should be able to learn quite a bit
about ncurses and more simply by reading our code. And you’ll find that we’ve structured
Sudoku’s framework much like we did the Game of Fifteen’s. It’s in main that we have a big loop,
waiting and waiting for some user’s input. And it’s in separate functions that we (and, soon, you)
set the game up and respond to that input.

 Because this game is meant to be more sophisticated (and fun) than the last, you’ll also find that

we’ve given you more code this time. Don’t freak out, but it’s just over 600 lines. But know now
that none of it is all that complicated. In fact, if you look at each of the functions in isolation,
you’ll likely find each pretty straightforward. What’s neat is that when you combine so many
building blocks, you get some pretty compelling results. In fact, let’s take a look.

 If you’re not still there, navigate your way to ~/pset4/ on cloud.cs50.net and execute the

(increasingly familiar) command below.

 make

 You should find a brand-new executable called sudoku in your current working directory. Go

ahead and run it by typing the command below.

 sudoku

 You won’t yet see our skeleton but instead the game’s usage:

 Usage: sudoku n00b|l33t [#]

 Not only does our skeleton support two levels of game play (n00b and l33t), it also comes with

1024 different boards for each level. Ultimately, if you’d like to play a pseudorandomly chosen
n00b board, you’ll want to execute just:

 sudoku n00b

6 Annoyingly, yes, it’s (y, x) and not (x, y).

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

10 < 17

 But if you want to play a specific board (e.g., n00b #42), perhaps one that defeated you earlier,
you can load it up manually:

 sudoku n00b 42

 Alright, go ahead and execute

 sudoku n00b 42

 to fire up our skeleton with n00b #42. You should see a GUI like that below.7

 Notice how, for clarity’s sake, we use periods for blanks; underneath the hood, we represent each

of those same blanks with 0 (an actual int). So this is all pretty neat, but this skeleton lacks that
personal touch (not to mention support for moving the cursor). What do work out of the box are
[N]ew Game, [R]estart Game, and [Q]uit Game. So go ahead and hit Q to quit.

 Then open up sudoku.h (as with Nano). You’ll find in that file a whole bunch of constants that

get compiled into the program. Go ahead and change, at least, AUTHOR to your own name. Feel
free to change TITLE as well. To see the results, save your changes and quit. Then re-run
`make` followed by `sudoku`. You’ve just made the program your own!

7 If using PuTTY on Windows or Terminal on Mac OS, you should see a colorful GUI. If you’re instead using SecureCRT on
Windows and only see monochrome (e.g., black and white) or gaps in the program’s borders, go to Options → Session
Options... → Terminal → Emulation, and change Terminal to Linux and check the box next to ANSI Color. After clicking OK, go
to Options → Save Settings Now. You may then need to log out and back in to see our GUI in color. If you can’t get color to
work, head to the course’s bulletin board for advice!

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

11 < 17

 Now go back into sudoku.h and play with all those mentions of color. It turns out that ncurses
deals with colors in pairs, whereby characters have both a foreground color and a background
color. By default, characters’ foregrounds are white and backgrounds are black. But clearly we’ve
overridden those defaults for our skeleton’s borders and logo. For now, you’ll want to leave that
enum alone, but feel free to change the values of any constants whose names begin with FG_ or
BG_. Here are the colors that ncurses comes with:

 COLOR_BLACK
 COLOR_RED
 COLOR_GREEN
 COLOR_YELLOW
 COLOR_BLUE
 COLOR_MAGENTA
 COLOR_CYAN
 COLOR_WHITE

 You will, of course, need to recompile your game to see any colorful changes. Not all that hard to

make one hideous game, eh?

 Okay, now take a quick glance at Makefile. It should look pretty similar to the Game of Fifteen’s,

but take note that we’ve included a -lncurses flag. And be sure not to change the two tabs in
that file to spaces!

 Now take a look at, say, n00b.bin, but not with Nano this time! Instead, execute the command

below.8

 xxd -b n00b.bin

 Wow, a whole lot of numbers probably flew past. You’ve just looked at the contents of a binary

file. Inside that file are a whole bunch of 32-bit ints, 1024 × 81 = 82,944 of them, in fact, as that
file contains 1024 n00b boards, each of which includes 81 numbers and/or blanks (for a 9×9 grid).9
Similarly does l33t.bin contain 1024 l33t boards.

 Now that you’ve run sudoku at least once, you might also have noticed a file called log.txt that

wasn’t there when you first copied our code over. You’re welcome to look, but you needn’t pay
much attention; it’s generated by our framework in order to facilitate automated tests of your
code.

 Alright, we’re really moving along. Only one file to go!

8 Note that “n00b” is spelled with two zeroes!
9 We could have used unsigned chars instead of ints, since Sudoku only needs numbers from 1 to 9, but we decided
that ints would be simpler, despite the additional cost in space.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

12 < 17

8. Damn, it’s the big one.

 Go ahead and open up sudoku.c (as with Nano).

 The best way to tackle this problem set is to start by understanding this file. We’ll get you started.

 First take note of one of the file’s first lines:

 #define CTRL(x) ((x) & ~0140)

 Just as you can define what we know as constants with #define, you can also define “macros,”

short snippets of code that behave a little bit like functions but without the overhead (e.g., stack
frames) of an actual function call. This particular macro will enable you to detect control
characters from users, if you so desire. Out of the box, our skeleton already understands ctrl-L, a
keystroke meant to induce a redrawing of the game’s screen.

 Now take a look at the struct just below that macro. Think of a struct as a wrapper that

groups related variables together. Inside this particular struct is a whole bunch of globals.
Truth be told, we could have defined all those variables as globals without using a struct, much
like we did for the Game of Fifteen. But because there are so many, all related to this game, we
decided to “keep them together” in one big struct called g. That way, it’ll be all the more obvious
when these variables are used that they’re not, in fact, locals.

 Next notice our skeleton’s prototypes. Much like we divided the Game of Fifteen into functions

whose names described their particular role, similarly have we taken that approach here. But
more on those later.

 Now dive into main. Best, though, if we not hold your hand too much through this one. We

daresay that learning to program is as much about writing your own programs as it is about
reading others’, particular when your assignment (or job) is to build on the latter. Odds are you’ll
thank us some day for actually having comments in ours!10

 To be sure, there’s a lot going on in this file, but you don’t need to read each and every line (yet)

to get a sense of the program’s overall flow.

 Do read each and every line in main, though. After all, that’s the function that drives this whole

program. And because our other functions’ names rather say what those functions do, you can
probably read main from top to bottom and have a pretty good idea of how the program
currently works.

 Next dive into some of the functions that main calls. A good one to start with is startup, as it

gets ncurses going. Notice how it calls a bunch of other functions that appear to configure
ncurses. Although we’ve commented each call, you might want to pull up the man page for some
or all of those functions, if only to get all the more comfortable with ncurses.

10 You should see the mess that is the open-source bulletin board software we’re using.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

13 < 17

 Next take a look at load_board, the function that loads a n00b or l33t board from disk,
depending on the value, if any, in main’s argv[2]. You needn’t understand how fopen, fseek,
fread, or fclose work for this problem set, but it is kind of neat how they get all those bits into
memory. What this function ultimately does is load 81 ints into the global array called g.board.
Not all that hard!

 Let’s see, next take a look at draw_borders. It’s this function that creates the game’s, well,

borders. Of particular note in this function is how to use ncurses. Notice, for instance, that the
function first determines your terminal window’s dimensions using a macro called getmaxyx
(that comes with ncurses).11 It eventually uses those maxima to fill your window’s topmost and
bottommost rows with some color (and instructions). Notice how the function enables color,
specifically turning on the COLOR_PAIR attribute that we called PAIR_BORDER (back in
suduko.h). It then proceeds to draw the game’s borders by moving, left to right, from
coordinate to coordinate, laying down blank spaces. (Because we, at least, defined PAIR_BORDER
with a red background, the results are “blank” lines filled with color.) But the function next lays
down some text, centering your program’s TITLE and AUTHOR in the topmost border using some
simple arithmetic. It then plants some instructions on top of bottommost border, before turning
color back off.

 Now take a look at draw_grid. It’s this function that lays down the ASCII art that represents our

game’s board. Similarly does it first determine your window’s dimensions. It then uses those
values to determine coordinates for the grid’s top-left corner. (We decided that we wanted the
grid roughly in the middle of your window but slightly to the left, and so we came up with those
formulas by trial and error.) Rather than generate this grid character by character, this function
instead lays down whole strings instead (using ncurses’ mvaddstr function). Specifically, this
function moves the cursor to a specific coordinate and adds a string there. It then does that again
and again (in that for loop) in order to print most of the game’s grid. (Again, we determined
most of those coordinates by trial and error.) We then thought it’d be neat to remind the user of
the level and board that he or she is playing, and so we constructed a string on the fly using
sprintf, and then added it to the screen with a final call to mvaddstr.

 Incidentally, if curious to learn more about all these ncurses functions, man is your friend.12

 Next glance at draw_logo. Notice how it bases its own coordinates on those of the grid. Notice,

too, how distorted our logo looks. That’s because we had to escape some of its backslashes with
backslashes of our own! Do feel free to alter the logo. You might find this site a fun time:

 http://www.network-science.de/ascii/

 Now look at draw_numbers. It’s this function that fills that otherwise empty grid with the

numbers in g.board. That kind of knowledge is bound to be useful!

11 It’s because getmaxyx is a macro and not an actual function that you don’t need to pass in its arguments by reference.
12 Some functions don’t actually have their own man page, so you might need to execute `man ncurses`, and then look for
the Manual Page Name for some the curses Routine Name of interest.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

14 < 17

 Now glance at show_banner and hide_banner. Both pretty simple, these functions exist so
that you can show (and hide) messages to users. In fact, while using ncurses, do not use printf
as well. Bad things will happen.

 Speaking of show_banner, why don’t we also peek at show_cursor. Recall that functions like

mvaddch and mvaddstr end up moving your cursor in order to add text to the screen. That’s
kind of annoying if you want to use that same cursor to play the actual game. And so it’s
necessary to remember where the cursor should be with respect to that grid. Glance back at that
global called g and you’ll see how we do it. This show_cursor function relies on that struct to
return the cursor to where it should be after screen updates.

 Let’s see, you needn’t worry too much about handle_signal. Just know that when terminal

windows are resized (as from 80×24 to something larger or smaller), “signals” are generated. Our
code is “listening” for that signal so that we can respond to resizings by re-centering everything.

 Okay, so that only leaves log_move, redraw_all, restart_game, and shutdown. Those you

can handle! Take the same approach that we took here, walking through each function, pulling up
man pages as needed, and only move on once you understand each function’s flow.

 So that’s everything. Not bad for 600+ lines.

9. And yet none of those lines actually implement Sudoku. But that’s where you come in! Your

challenge for this problem set is to implement a few features, among them support for actual
game play! Specifically, you must implement each of the REQUIRED FEATURES below and any
one (1) of the ADDITIONAL.

 This problem set is perhaps more about design than anything else, so do give some thought about

how best to implement some feature, given the game’s framework. With that said, you are
welcome to change most any aspect of our code if the change fits your design better. However,
what you must not change is anything related to logging, including log_move. So that we can
automate some tests of your code, your program, no matter your changes, must still call our
implementation of log_move after each keystroke from users, whether or not that keystroke
actually altered the board.

 Alright, get to it! Here’s your menu of features. Know that we’ve enumerated the REQUIRED in

the order in which they should probably be implemented.

 REQUIRED FEATURES

 At the moment, the cursor is “stuck” in the board’s center. Enable users to move that
cursor up, down, left, and right by way of their keyboard’s arrow keys. You’re welcome to
support other keys for movement as well, but you must support KEY_UP, KEY_DOWN,
KEY_LEFT, and KEY_RIGHT, constants that represent the characters fed to ncurses’ getch
function when arrow keys are pressed. (See getch’s man page for even more constants.)
Only allow the user to move his or her cursor to coordinates where there are actual
numbers or blanks. (For the sake of discussion, let’s call those 81 locations “cells.”) The

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

15 < 17

cursor should “hop over” one-character lateral gaps between cells as well as the innermost
crossbars that make up the grid’s lines. Even though you might be tempted to hop over
numbers that came with the board (i.e., that cannot be changed), resist the temptation;
allow the cursor to be in any one of those 81 cells.

 Enable the user to replace any blank with a number by moving his or her cursor over that

blank and then hitting a number from 1 to 9.

 Enable the user to change a number that he or she already inputted back to a blank (by
hitting 0, a period, Backspace, or Delete) or to some other number from 1 to 9. But do not
allow the user to alter numbers that “came with” the board.

 Any time the user changes the board, check whether the game has been won. If so, display

a congratulatory banner and prevent the user from changing the board further.

 Any time the user changes the board, check whether he or she has inserted a number where
it cannot possibly go (because that same number already exists in the same column or row
or 3×3 box). If so, display a banner that warns of the gaffe that disappears after the user’s
next move (assuming the next move is not also an obvious mistake).

IMPLEMENT AT LEAST ONE (1) OF THESE ADDITIONAL FEATURES
And make clear in the comments atop sudoku.c which of these features you implemented.

 In addition to displaying a congratulatory banner, turn all 81 numbers green when the game
has been won.

 In addition to warning the user of obvious mistakes with a banner, turn the column, row, or

3×3 box with the error red until the mistake is corrected.

 Enable the cursor to “wrap around” from the top row to bottom, bottom to top, left to right,
or right to left if the user presses KEY_UP, KEY_DOWN, KEY_LEFT, or KEY_RIGHT,
respectively, one too many times.

 Display numbers that “came with” the board in a different color than those that the user has

inputted.

 Keep track (in seconds) of the amount of time that the user has been playing the current
board and allow the user to show or hide that clock at any time by hitting T. Be sure to stop
the clock the moment the game has been won.

 Allow the user to undo the last change made to the board by hitting U or ctrl-Z.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

16 < 17

10. Don’t forget about the course’s bulletin board! And don’t forget to check in your code with ci!

 If you’d like to play with the staff’s own implementation of sudoku on cloud.cs50.net, you

may execute the below.

 ~cs50/pub/solutions/pset4/sudoku

Submitting Your Work.

11. Ensure that your work is in ~/pset4/ on cloud.cs50.net. Submit your work by executing the

command below.

 cs50submit pset4

 Thereafter, follow any on-screen instructions until you receive visual confirmation of your work’s

successful submission. You will also receive a “receipt” via email to your FAS account, which you
should retain until term’s end. You may re-submit as many times as you’d like; each resubmission
will overwrite any previous submission. But take care not to re-submit after the problem set’s
deadline, as only your latest submission’s timestamp is retained.

4 7 9

4 7

7 4 6 5

2 8 9 3 1

8 4

1 7 4 3 2

7 4 3 6

8 9

1 2 5

Puzzle 1 (Medium, difficulty rating 0.55)

5 3 7 8

8 9 4

1 4 3 7

9 1

9 7 2 6

3 1

6 3 1 2

2 9 4

1 6 4 7

Puzzle 2 (Easy, difficulty rating 0.39)

9 8 7 1 6

6 1 8

8

5 1 9

8 4 7 5 2 1

3 2 4

4

6 5 7

7 5 4 3 8

Puzzle 3 (Hard, difficulty rating 0.75)

3 5 8 9 6 2 4

7 9 4

3 7

7 1

4 6

8 3

5 6

9 4 2

1 5 2 3 8 9 6

Puzzle 4 (Medium, difficulty rating 0.49)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:46 2008 GMT. Enjoy!

4 5

5 6 9

2 3 8 5 9 6

9 6 2

7 5

5 4 7

1 9 8 2 7 5

6 9 2

6 7

Puzzle 5 (Hard, difficulty rating 0.61)

9

3 4 1 9

1 9 5 4 2

9 8 2

5 4 2 9 6

2 1 5

5 7 6 3 1

1 3 9 5

8

Puzzle 6 (Medium, difficulty rating 0.53)

1 5 2

5 6 1 8

6 7 9 5

1 7 6

3 7

9 1 8

6 8 2 1

2 9 3 6

7 2 9

Puzzle 7 (Medium, difficulty rating 0.47)

4 8 6

5 4

8 6 4 1

8 3 1 2

3 2 8 1

6 4 8 7

1 4 6 9

2 9

5 1 3

Puzzle 8 (Hard, difficulty rating 0.71)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:46 2008 GMT. Enjoy!

5 2 3

8

7 6 1 3 4 5

6 1 5 2

1 5

4 8 6 3

9 1 4 3 8 2

6

3 7 9

Puzzle 9 (Easy, difficulty rating 0.35)

6 4 9 7 8

9 8 3

3 4

5 3 9 8

9 7 3

8 5 6 7

4 3

2 4 8

6 2 5 9 7

Puzzle 10 (Easy, difficulty rating 0.43)

6 2 3 5 7

1 2 3

5 6 4

1 9 5

6 3 4

4 5 8

2 9 1

3 6 7

8 1 5 7 9

Puzzle 11 (Medium, difficulty rating 0.56)

5 7 9

7 8 3 4

9 4 6

5 8 1 4

7 4

9 7 5 1

3 6 2

8 5 9 7

5 3 6

Puzzle 12 (Easy, difficulty rating 0.35)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:46 2008 GMT. Enjoy!

3 1 5 6

6 8 1

8 7

5 3 4 8

1 9 2 6

4 8 6 9

7 1

1 8 4

3 7 6 5

Puzzle 13 (Medium, difficulty rating 0.50)

5 8 2

8 9 6 7

1 8 3

8 9

6 4 2 7 1 3 8

6 5

1 3 4

1 9 6 7

7 5 9

Puzzle 14 (Medium, difficulty rating 0.53)

4 1 5

9 5 6 2

2 8 9

5 8 1

6 2 1 3

4 9 6

9 8 3

4 2 9 8

6 2 3

Puzzle 15 (Easy, difficulty rating 0.37)

3 7 6 9

1 2

6 9 2 1

2 6 3 8

5 1 7

3 5 8 9

2 6 7 4

6 1

8 1 4 9

Puzzle 16 (Very hard, difficulty rating 0.84)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:46 2008 GMT. Enjoy!

3 1 2 7

3 6 9

4 5 6 7 1

8 2

6 9

6 2

2 5 8 7 4

7 5 9

1 7 3 6

Puzzle 17 (Hard, difficulty rating 0.60)

3 7 5 6 4

6 9 2

7 3

4 7 1

7 6 8 5

2 3 4

6 1

8 3 7

4 7 2 5 1

Puzzle 18 (Medium, difficulty rating 0.48)

6 8 2

1 3 9

1 4 5

1 6 7 2

7 8 2 6

4 2 7 5

7 1 8

9 4 1

4 9 6

Puzzle 19 (Medium, difficulty rating 0.48)

7 3 1

4 5 7

1 3 4 5

5 8 9

8 9 1 5 3

3 5 9

7 6 4 3

4 2 7

2 4 8

Puzzle 20 (Hard, difficulty rating 0.65)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:46 2008 GMT. Enjoy!

2 8 9

9 7 1 6

8 7 3 6

9 6 3

8 2

3 1 6

1 8 5 6

7 1 5 4

2 4 3

Puzzle 21 (Easy, difficulty rating 0.40)

1 5

9 5 3 6

3 7

8 4 3 7

6 3 7 8 4 9

7 4 5 8

3 9

5 2 9 8

9 2

Puzzle 22 (Hard, difficulty rating 0.61)

4 6 8

7 3

6 7 8 5

5 4 7 2 8

3 5

6 4 5 2 9

7 5 6 9

2 6

3 7 2

Puzzle 23 (Easy, difficulty rating 0.45)

3 8

7 5 4 6

6 1 7 4

8 7 9 3

1 5

9 4 3 2

5 1 2 3

9 3 6 5

1 5

Puzzle 24 (Hard, difficulty rating 0.60)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:46 2008 GMT. Enjoy!

3 7

2 9 6

1 8 4 9 5

9 1 3

1 2 7 4

5 7 8

7 3 9 2 1

4 3 2

8 5

Puzzle 25 (Medium, difficulty rating 0.56)

9 1 5 4

5 1 3

6 2 8 9

4 5 3 6

7 1 9 3

6 9 4 2

4 3 7

5 7 9 1

Puzzle 26 (Medium, difficulty rating 0.50)

5 8 7

4 6 8

4 9

8 3 7 4 5 2

5 8 6

4 6 3 5 9 7

1 5

6 4 5

8 2 1

Puzzle 27 (Medium, difficulty rating 0.47)

2 1 5

5 7 8

4 8 6 7

2 8 6

6 9 8 7

7 3 1

5 7 9 1

7 9 4

1 4 5

Puzzle 28 (Medium, difficulty rating 0.46)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

1 4 5

2 5 8

3 8 7 6 2

7 1 5

5 4

1 6 3

4 3 7 6 2

6 2 4

8 9 7

Puzzle 29 (Easy, difficulty rating 0.42)

9 4 6 7

5 1 4

3 5 6 8

3 9

8 5 1 6

2 5

4 9 5 2

7 6 3

2 7 1 4

Puzzle 30 (Easy, difficulty rating 0.28)

8 6 1 9

5 6 2

9 8 1

2 9 4 7 8

4 8 7 6 1

7 3 1

4 3 7

2 8 3 4

Puzzle 31 (Easy, difficulty rating 0.40)

5 1 7 6

7 8 3

8 7 5

6 9 1

8 3 7 6 5

9 1 8

9 7 2

1 9 8

3 5 2 7

Puzzle 32 (Easy, difficulty rating 0.44)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

5 2

5 6 9 7 8 3

8 4 5

7 8 9

4 5

1 7 5

9 8 1

6 3 5 7 4 2

4 6

Puzzle 33 (Easy, difficulty rating 0.43)

3 4 1 2 6

5 6 8 3

5 8 1

9 4 7

9

7 6 8

6 9 3

4 9 1 5

1 8 6 2 9

Puzzle 34 (Easy, difficulty rating 0.38)

2 4 3 6

3 1 7

1 9

4 1 9 8 3

4 2

6 9 3 2 8

7 5

8 5 3

7 1 6 9

Puzzle 35 (Easy, difficulty rating 0.41)

6

5 8 9 3

7 4 8 5

4 2 7 3 9

3 7

8 1 4 6 2

7 2 6 5

8 3 9 7

1

Puzzle 36 (Very hard, difficulty rating 0.86)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

8 2 6

3 9 7 1

4 1 2

6 4 7 8

9 4

3 9 6 7

5 4 3

2 8 9 3

2 5 7

Puzzle 37 (Easy, difficulty rating 0.44)

2 7 9 4

1

6 3 9 2

3 9 4 8 2

8 6 7

4 2 1 8 9

1 3 8 9

3

8 6 2 5

Puzzle 38 (Easy, difficulty rating 0.45)

1 6 9 3

3 2

6 3 4

6 4 5 8 2 1

8 3 5 1 7 6

4 5 8

2 6

7 4 3 6

Puzzle 39 (Hard, difficulty rating 0.67)

7 5 8 9

4 1 8 7

8 9 3

1 4 9

7 6 2

4 9 5

9 8 7

5 1 9 3

6 3 7 2

Puzzle 40 (Hard, difficulty rating 0.61)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

4 5

3 7

5 9 8 1 2

6 9 1 4

1 3 9 6

7 4 9 3

1 7 6 9 2

3 8

3 4

Puzzle 41 (Medium, difficulty rating 0.50)

6 3 4 1

4 1 3

1 6

5 2 8 4

4 5 2 3 8

6 1 2 9

8 5

9 8 7

5 2 9 1

Puzzle 42 (Medium, difficulty rating 0.48)

6 9 2

8 4 3

6 4 2 7 5

4 7

3 7 9 8 6

5 3

1 4 9 2 6

7 3 4

9 8 1

Puzzle 43 (Easy, difficulty rating 0.35)

3 5 8 4

4 5 1

1 8 7 6 5

7 2 3

2

5 4 8

7 6 3 8 1

9 7 1

8 5 9 7

Puzzle 44 (Very hard, difficulty rating 0.78)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

2 8 7 3

9 8 6

4 8 1 9 7

3 9

9 6 4

2 1

2 3 9 4 5

7 9 8

5 4 2 3

Puzzle 45 (Medium, difficulty rating 0.53)

8 6 7 3

3

3 6 5 2 8

1 6 9

3 8 2 6 4

2 6 5

1 8 4 9 3

9

5 6 7 1

Puzzle 46 (Easy, difficulty rating 0.35)

8 5 7 6

5

1 2 3

1 6 9 2

7 2 4 5 9 6

4 7 1 3

1 7 2

3

9 8 6 7

Puzzle 47 (Medium, difficulty rating 0.48)

7

8 3 5 4

5 8 1

2 7 4 5 6

9 4 1 5 7

5 6 8 4 2

9 8 6

5 1 6 4

2

Puzzle 48 (Hard, difficulty rating 0.60)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

Puzzle 1 (Medium, difficulty rating 0.55)

3 4 1 7 2 5 6 9 8

6 5 9 3 1 8 2 4 7

7 8 2 9 4 6 5 1 3

2 6 5 8 7 4 9 3 1

9 3 8 2 6 1 4 7 5

1 7 4 5 9 3 8 6 2

5 2 7 4 3 9 1 8 6

8 9 6 1 5 7 3 2 4

4 1 3 6 8 2 7 5 9

Puzzle 2 (Easy, difficulty rating 0.39)

5 3 4 9 6 7 2 8 1

6 2 7 8 5 1 9 3 4

1 9 8 2 4 3 7 6 5

4 6 2 7 3 9 1 5 8

9 7 1 4 8 5 3 2 6

8 5 3 1 2 6 4 7 9

7 4 6 3 1 8 5 9 2

2 8 9 5 7 4 6 1 3

3 1 5 6 9 2 8 4 7

Puzzle 3 (Hard, difficulty rating 0.75)

9 5 2 8 7 4 1 3 6

4 6 3 2 5 1 8 9 7

1 7 8 9 3 6 5 4 2

5 2 7 4 1 9 6 8 3

3 8 4 7 6 5 2 1 9

6 9 1 3 2 8 7 5 4

2 3 9 1 8 7 4 6 5

8 4 6 5 9 2 3 7 1

7 1 5 6 4 3 9 2 8

Puzzle 4 (Medium, difficulty rating 0.49)

3 5 8 9 6 1 2 4 7

7 6 9 4 5 2 3 1 8

2 4 1 3 8 7 5 6 9

5 2 3 6 7 4 9 8 1

1 7 4 2 9 8 6 3 5

8 9 6 1 3 5 7 2 4

9 8 2 5 4 6 1 7 3

6 3 7 8 1 9 4 5 2

4 1 5 7 2 3 8 9 6

Puzzle 5 (Hard, difficulty rating 0.61)

6 9 1 2 3 4 7 5 8

8 7 5 1 6 9 4 2 3

2 3 4 8 5 7 9 1 6

9 1 3 5 7 6 8 4 2

4 8 7 9 2 3 5 6 1

5 2 6 4 1 8 3 9 7

1 4 9 3 8 2 6 7 5

7 5 8 6 9 1 2 3 4

3 6 2 7 4 5 1 8 9

Puzzle 6 (Medium, difficulty rating 0.53)

7 9 4 1 3 2 6 5 8

2 5 3 8 7 6 4 1 9

8 6 1 9 5 4 2 7 3

9 4 6 3 8 5 7 2 1

5 1 7 4 2 9 8 3 6

3 2 8 6 1 7 9 4 5

4 8 5 7 6 3 1 9 2

1 3 9 2 4 8 5 6 7

6 7 2 5 9 1 3 8 4

Puzzle 7 (Medium, difficulty rating 0.47)

9 1 8 3 5 4 7 2 6

3 4 5 6 7 2 1 8 9

2 6 7 1 8 9 3 4 5

1 8 4 7 3 5 9 6 2

5 3 2 9 6 8 4 7 1

7 9 6 2 4 1 5 3 8

6 5 3 8 9 7 2 1 4

8 2 9 4 1 3 6 5 7

4 7 1 5 2 6 8 9 3

Puzzle 8 (Hard, difficulty rating 0.71)

4 2 1 8 3 9 6 7 5

6 3 7 1 5 2 9 8 4

5 8 9 6 7 4 3 1 2

7 9 8 3 1 5 2 4 6

3 4 2 9 6 7 8 5 1

1 5 6 2 4 8 7 3 9

8 1 3 4 2 6 5 9 7

2 7 4 5 9 3 1 6 8

9 6 5 7 8 1 4 2 3

Puzzle 9 (Easy, difficulty rating 0.35)

5 9 4 7 2 6 1 3 8

1 8 3 9 5 4 2 7 6

7 6 2 1 3 8 4 9 5

6 7 9 3 1 5 8 2 4

3 1 8 4 9 2 6 5 7

2 4 5 8 6 7 9 1 3

9 5 1 6 4 3 7 8 2

4 2 7 5 8 9 3 6 1

8 3 6 2 7 1 5 4 9

Puzzle 10 (Easy, difficulty rating 0.43)

6 3 4 9 5 7 1 8 2

9 8 1 6 2 4 5 7 3

5 7 2 1 8 3 6 9 4

7 2 5 4 3 9 8 6 1

1 9 6 8 7 2 4 3 5

3 4 8 5 6 1 7 2 9

4 1 7 3 9 8 2 5 6

2 5 9 7 1 6 3 4 8

8 6 3 2 4 5 9 1 7

Puzzle 11 (Medium, difficulty rating 0.56)

6 2 4 3 9 8 5 1 7

5 8 7 1 6 4 9 2 3

9 1 3 7 5 2 6 8 4

1 3 8 2 4 9 7 6 5

7 5 6 8 3 1 4 9 2

4 9 2 5 7 6 1 3 8

2 7 9 4 1 3 8 5 6

3 6 5 9 8 7 2 4 1

8 4 1 6 2 5 3 7 9

Puzzle 12 (Easy, difficulty rating 0.35)

5 4 3 7 6 9 2 8 1

7 1 6 2 5 8 3 9 4

9 8 2 4 3 1 7 6 5

3 5 8 1 4 2 6 7 9

1 9 7 6 8 5 4 2 3

6 2 4 3 9 7 5 1 8

4 3 1 8 7 6 9 5 2

8 6 5 9 2 4 1 3 7

2 7 9 5 1 3 8 4 6

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

Puzzle 13 (Medium, difficulty rating 0.50)

3 1 2 9 7 5 6 8 4

9 7 4 2 6 8 1 5 3

8 6 5 1 3 4 7 2 9

7 2 6 5 1 3 4 9 8

1 5 9 4 8 7 2 3 6

4 3 8 6 2 9 5 1 7

6 8 7 3 5 2 9 4 1

5 9 1 8 4 6 3 7 2

2 4 3 7 9 1 8 6 5

Puzzle 14 (Medium, difficulty rating 0.53)

5 9 6 1 4 7 3 8 2

3 2 8 5 9 6 4 1 7

4 1 7 8 3 2 5 9 6

2 7 1 3 8 9 6 5 4

6 4 5 2 7 1 9 3 8

8 3 9 6 5 4 2 7 1

9 6 2 7 1 3 8 4 5

1 8 4 9 6 5 7 2 3

7 5 3 4 2 8 1 6 9

Puzzle 15 (Easy, difficulty rating 0.37)

8 7 6 4 3 9 2 1 5

1 9 5 6 2 7 8 4 3

3 4 2 8 1 5 7 6 9

2 3 7 5 8 4 6 9 1

5 6 9 2 7 1 4 3 8

4 8 1 3 9 6 5 2 7

9 1 4 7 6 8 3 5 2

7 5 3 1 4 2 9 8 6

6 2 8 9 5 3 1 7 4

Puzzle 16 (Very hard, difficulty rating 0.84)

5 3 2 7 8 6 9 1 4

1 7 9 3 4 5 8 6 2

4 8 6 9 2 1 3 5 7

2 1 7 6 9 3 5 4 8

8 9 5 4 1 2 7 3 6

3 6 4 5 7 8 1 2 9

9 5 1 2 6 7 4 8 3

6 4 3 8 5 9 2 7 1

7 2 8 1 3 4 6 9 5

Puzzle 17 (Hard, difficulty rating 0.60)

3 6 8 1 9 2 4 7 5

2 7 1 3 5 4 8 6 9

9 4 5 8 6 7 3 1 2

5 8 2 9 7 6 1 3 4

4 3 6 2 1 8 9 5 7

1 9 7 4 3 5 6 2 8

6 2 9 5 8 1 7 4 3

7 5 3 6 4 9 2 8 1

8 1 4 7 2 3 5 9 6

Puzzle 18 (Medium, difficulty rating 0.48)

3 7 5 1 6 2 4 8 9

8 6 1 4 9 3 5 2 7

2 4 9 7 8 5 1 6 3

4 9 3 8 5 7 6 1 2

7 1 6 2 4 9 8 3 5

5 2 8 3 1 6 7 9 4

6 5 7 9 2 1 3 4 8

1 8 2 5 3 4 9 7 6

9 3 4 6 7 8 2 5 1

Puzzle 19 (Medium, difficulty rating 0.48)

3 4 6 5 9 8 2 7 1

5 1 8 2 3 7 9 4 6

2 9 7 6 1 4 3 8 5

8 5 1 4 6 9 7 3 2

9 7 3 8 5 2 1 6 4

4 6 2 3 7 1 5 9 8

7 3 5 1 8 6 4 2 9

6 2 9 7 4 5 8 1 3

1 8 4 9 2 3 6 5 7

Puzzle 20 (Hard, difficulty rating 0.65)

7 8 5 6 9 3 1 2 4

9 6 4 5 2 1 3 8 7

2 1 3 8 4 7 6 5 9

3 5 6 7 8 9 2 4 1

8 4 9 2 1 6 5 7 3

1 2 7 3 5 4 8 9 6

5 7 1 9 6 8 4 3 2

4 9 8 1 3 2 7 6 5

6 3 2 4 7 5 9 1 8

Puzzle 21 (Easy, difficulty rating 0.40)

6 4 2 5 8 1 7 3 9

9 3 5 7 2 4 1 8 6

1 8 7 3 6 9 2 4 5

5 2 9 8 7 6 4 1 3

8 1 6 4 5 3 9 7 2

3 7 4 1 9 2 6 5 8

4 9 3 2 1 8 5 6 7

7 6 1 9 3 5 8 2 4

2 5 8 6 4 7 3 9 1

Puzzle 22 (Hard, difficulty rating 0.61)

1 3 5 6 4 7 2 9 8

7 4 2 8 9 1 5 3 6

8 9 6 3 2 5 1 4 7

2 8 1 9 6 4 3 7 5

6 5 3 7 1 8 4 2 9

9 7 4 5 3 2 6 8 1

3 1 7 2 5 9 8 6 4

5 2 9 4 8 6 7 1 3

4 6 8 1 7 3 9 5 2

Puzzle 23 (Easy, difficulty rating 0.45)

9 3 5 4 6 7 8 1 2

8 4 2 9 5 1 7 6 3

6 1 7 2 3 8 9 5 4

1 5 4 7 2 9 3 8 6

3 2 9 8 1 6 4 7 5

7 6 8 3 4 5 2 9 1

4 7 1 5 8 3 6 2 9

2 8 6 1 9 4 5 3 7

5 9 3 6 7 2 1 4 8

Puzzle 24 (Hard, difficulty rating 0.60)

2 4 9 6 3 1 5 7 8

3 7 5 8 9 4 1 2 6

6 8 1 5 7 2 3 4 9

8 1 6 7 2 9 4 3 5

4 3 2 1 8 5 9 6 7

5 9 7 4 6 3 8 1 2

7 5 4 9 1 6 2 8 3

9 2 8 3 4 7 6 5 1

1 6 3 2 5 8 7 9 4

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:48 2008 GMT. Enjoy!

Puzzle 25 (Medium, difficulty rating 0.56)

4 8 5 3 1 9 2 6 7

2 9 3 7 5 6 1 8 4

1 6 7 8 2 4 3 9 5

9 4 8 2 6 7 5 1 3

3 1 2 5 9 8 7 4 6

5 7 6 1 4 3 9 2 8

7 3 4 9 8 2 6 5 1

6 5 9 4 7 1 8 3 2

8 2 1 6 3 5 4 7 9

Puzzle 26 (Medium, difficulty rating 0.50)

9 1 2 7 6 3 5 8 4

7 5 8 4 1 9 6 3 2

3 6 4 2 5 8 7 1 9

4 2 5 3 9 7 1 6 8

1 9 3 8 4 6 2 5 7

8 7 6 5 2 1 9 4 3

6 8 1 9 7 4 3 2 5

2 4 9 1 3 5 8 7 6

5 3 7 6 8 2 4 9 1

Puzzle 27 (Medium, difficulty rating 0.47)

5 4 2 9 6 8 1 3 7

3 9 1 4 2 7 6 8 5

6 7 8 5 3 1 4 2 9

9 8 3 6 7 4 5 1 2

2 5 7 1 8 9 3 6 4

4 1 6 3 5 2 9 7 8

1 2 5 7 9 3 8 4 6

7 6 4 8 1 5 2 9 3

8 3 9 2 4 6 7 5 1

Puzzle 28 (Medium, difficulty rating 0.46)

6 3 7 4 2 8 1 9 5

9 5 2 1 3 7 4 8 6

4 1 8 5 6 9 2 3 7

7 2 1 8 4 6 3 5 9

3 6 9 2 1 5 8 7 4

8 4 5 7 9 3 6 1 2

5 8 3 6 7 4 9 2 1

2 7 6 9 8 1 5 4 3

1 9 4 3 5 2 7 6 8

Puzzle 29 (Easy, difficulty rating 0.42)

1 7 2 3 4 8 9 6 5

6 4 9 2 5 1 7 8 3

5 3 8 7 6 9 2 1 4

4 9 7 6 8 3 1 5 2

3 8 5 9 1 2 4 7 6

2 1 6 4 7 5 3 9 8

9 5 4 8 3 7 6 2 1

7 6 1 5 2 4 8 3 9

8 2 3 1 9 6 5 4 7

Puzzle 30 (Easy, difficulty rating 0.28)

9 1 4 2 6 8 3 5 7

5 6 8 7 3 1 4 2 9

7 2 3 4 9 5 6 8 1

3 7 1 9 5 6 8 4 2

8 5 2 3 4 7 9 1 6

4 9 6 1 8 2 7 3 5

6 4 9 5 1 3 2 7 8

1 8 7 6 2 4 5 9 3

2 3 5 8 7 9 1 6 4

Puzzle 31 (Easy, difficulty rating 0.40)

8 3 6 7 1 9 4 5 2

1 5 4 8 6 2 9 3 7

7 2 9 3 5 4 8 1 6

2 6 1 9 4 3 7 8 5

5 9 7 1 2 8 6 4 3

3 4 8 5 7 6 2 9 1

4 7 3 6 9 5 1 2 8

6 8 2 4 3 1 5 7 9

9 1 5 2 8 7 3 6 4

Puzzle 32 (Easy, difficulty rating 0.44)

5 2 4 9 3 1 7 8 6

9 6 7 4 8 5 2 3 1

8 3 1 7 6 2 9 5 4

6 5 9 1 2 8 4 7 3

1 4 8 3 7 6 5 2 9

2 7 3 5 4 9 1 6 8

4 9 6 8 5 7 3 1 2

7 1 2 6 9 3 8 4 5

3 8 5 2 1 4 6 9 7

Puzzle 33 (Easy, difficulty rating 0.43)

5 8 3 1 7 4 6 2 9

2 1 4 5 6 9 7 8 3

9 7 6 2 8 3 4 5 1

4 5 7 8 3 1 9 6 2

3 6 9 4 2 5 8 1 7

8 2 1 6 9 7 5 3 4

7 9 8 3 1 6 2 4 5

6 3 5 7 4 2 1 9 8

1 4 2 9 5 8 3 7 6

Puzzle 34 (Easy, difficulty rating 0.38)

3 8 4 7 1 2 9 6 5

1 9 5 6 4 8 7 2 3

2 6 7 5 3 9 8 4 1

9 3 2 4 8 5 6 1 7

8 4 6 1 9 7 3 5 2

7 5 1 3 2 6 4 9 8

6 7 9 2 5 3 1 8 4

4 2 8 9 7 1 5 3 6

5 1 3 8 6 4 2 7 9

Puzzle 35 (Easy, difficulty rating 0.41)

9 5 2 8 7 4 1 3 6

4 6 3 2 5 1 8 9 7

1 7 8 9 3 6 5 4 2

5 2 7 4 1 9 6 8 3

3 8 4 7 6 5 2 1 9

6 9 1 3 2 8 7 5 4

2 3 9 1 8 7 4 6 5

8 4 6 5 9 2 3 7 1

7 1 5 6 4 3 9 2 8

Puzzle 36 (Very hard, difficulty rating 0.86)

2 4 9 3 8 5 1 7 6

5 8 6 9 7 1 4 2 3

3 1 7 6 4 2 8 5 9

4 2 1 7 3 6 9 8 5

6 5 3 8 2 9 7 1 4

7 9 8 5 1 4 3 6 2

9 7 2 4 6 8 5 3 1

8 6 4 1 5 3 2 9 7

1 3 5 2 9 7 6 4 8

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:48 2008 GMT. Enjoy!

Puzzle 37 (Easy, difficulty rating 0.44)

1 8 2 7 3 6 4 9 5

3 4 9 5 8 2 7 1 6

7 6 5 4 1 9 8 3 2

6 5 4 3 7 1 2 8 9

8 9 7 6 2 5 3 4 1

2 3 1 8 9 4 6 5 7

5 7 6 9 4 3 1 2 8

4 2 8 1 5 7 9 6 3

9 1 3 2 6 8 5 7 4

Puzzle 38 (Easy, difficulty rating 0.45)

2 3 5 8 1 7 9 4 6

9 4 8 6 5 2 1 7 3

1 6 7 3 9 4 5 2 8

3 7 9 4 8 5 2 6 1

8 2 1 9 6 3 4 5 7

6 5 4 7 2 1 8 3 9

7 1 2 5 3 8 6 9 4

5 9 3 1 4 6 7 8 2

4 8 6 2 7 9 3 1 5

Puzzle 39 (Hard, difficulty rating 0.67)

4 5 1 6 2 8 7 9 3

9 8 7 5 3 1 2 6 4

2 6 3 7 9 4 1 5 8

6 7 9 3 4 5 8 2 1

1 2 4 9 8 6 3 7 5

8 3 5 1 7 2 9 4 6

3 9 6 4 1 7 5 8 2

5 1 2 8 6 9 4 3 7

7 4 8 2 5 3 6 1 9

Puzzle 40 (Hard, difficulty rating 0.61)

3 2 7 1 5 6 4 8 9

4 1 9 3 8 7 5 6 2

8 5 6 9 2 4 7 3 1

1 8 3 2 4 5 9 7 6

9 7 5 8 6 1 3 2 4

2 6 4 7 9 3 8 1 5

5 9 2 6 3 8 1 4 7

7 4 8 5 1 2 6 9 3

6 3 1 4 7 9 2 5 8

Puzzle 41 (Medium, difficulty rating 0.50)

1 2 4 7 5 3 6 8 9

3 7 8 9 6 4 2 5 1

5 9 6 8 1 2 3 4 7

6 3 9 5 2 7 8 1 4

8 1 2 3 4 9 7 6 5

7 4 5 6 8 1 9 2 3

4 8 3 1 7 6 5 9 2

2 6 7 4 9 5 1 3 8

9 5 1 2 3 8 4 7 6

Puzzle 42 (Medium, difficulty rating 0.48)

6 3 5 7 9 4 2 1 8

4 8 7 6 1 2 9 3 5

9 1 2 3 5 8 6 7 4

5 2 1 8 6 9 7 4 3

7 4 9 5 2 3 1 8 6

8 6 3 4 7 1 5 2 9

1 7 8 9 3 6 4 5 2

2 9 4 1 8 5 3 6 7

3 5 6 2 4 7 8 9 1

Puzzle 43 (Easy, difficulty rating 0.35)

4 3 7 5 8 6 9 2 1

8 5 2 7 1 9 4 6 3

9 1 6 3 4 2 8 7 5

5 6 9 4 7 8 3 1 2

3 7 4 2 9 1 5 8 6

2 8 1 6 5 3 7 4 9

1 4 5 9 2 7 6 3 8

7 2 3 8 6 5 1 9 4

6 9 8 1 3 4 2 5 7

Puzzle 44 (Very hard, difficulty rating 0.78)

3 2 5 6 1 8 7 9 4

9 6 7 4 5 3 2 1 8

1 4 8 2 9 7 6 3 5

4 7 2 9 8 5 1 6 3

6 8 3 1 2 4 5 7 9

5 1 9 7 3 6 4 8 2

7 5 6 3 4 9 8 2 1

2 9 4 8 7 1 3 5 6

8 3 1 5 6 2 9 4 7

Puzzle 45 (Medium, difficulty rating 0.53)

2 9 6 8 7 5 3 4 1

3 1 7 9 2 4 8 6 5

5 4 8 3 1 6 9 7 2

6 3 1 4 5 9 2 8 7

9 8 2 7 6 1 5 3 4

7 5 4 2 8 3 6 1 9

1 2 3 6 9 7 4 5 8

4 7 9 5 3 8 1 2 6

8 6 5 1 4 2 7 9 3

Puzzle 46 (Easy, difficulty rating 0.35)

8 2 1 6 7 9 3 5 4

5 4 9 2 8 3 1 7 6

3 6 7 1 4 5 2 8 9

1 7 6 5 3 4 9 2 8

9 5 3 8 2 6 4 1 7

4 8 2 7 9 1 6 3 5

6 1 8 4 5 2 7 9 3

7 3 4 9 1 8 5 6 2

2 9 5 3 6 7 8 4 1

Puzzle 47 (Medium, difficulty rating 0.48)

8 2 5 3 4 9 7 6 1

9 1 3 8 6 7 2 4 5

6 7 4 5 1 2 8 9 3

5 3 1 6 9 8 4 7 2

7 8 2 4 3 5 9 1 6

4 6 9 2 7 1 3 5 8

1 4 6 7 2 3 5 8 9

3 5 7 9 8 6 1 2 4

2 9 8 1 5 4 6 3 7

Puzzle 48 (Hard, difficulty rating 0.60)

8 5 3 1 4 2 7 6 9

7 2 1 8 6 9 3 5 4

4 6 9 5 3 7 8 2 1

2 8 7 4 9 5 6 1 3

6 9 4 2 1 3 5 7 8

1 3 5 6 7 8 4 9 2

9 7 8 3 2 6 1 4 5

5 1 6 9 8 4 2 3 7

3 4 2 7 5 1 9 8 6

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:49 2008 GMT. Enjoy!

