
Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

0 < 18

Problem Set 8: Mashup

due by 7:00 P.M. on Friday, 5 December 2008

Goals.

• Introduce you to XML, DOM, RSS, JavaScript, and Ajax.
• Expose you to classes, objects, methods, and closures.
• Have you learn a real-world API.
• Take the training wheels off.

Recommended Reading.

• http://www.w3schools.com/xml/
• http://www.w3schools.com/dom/
• http://www.w3schools.com/rss/
• http://www.w3schools.com/js/
• http://www.w3schools.com/ajax/

NOTICE.

For this problem set, you are welcome and encouraged to consult “outside resources,” including books,
the Web, strangers, and friends, as you teach yourself more about XML, DOM, RSS, JavaScript, and Ajax,
so long as your work overall is ultimately your own. In other words, there remains a line, even if not
precisely defined, between learning from others and presenting the work of others as your own.

You may adopt or adapt snippets of code written by others (whether found in some book, online, or
elsewhere), so long as you cite (in the form of XHTML, CSS, PHP, or JavaScript comments) the origins
thereof.

And you may learn from your classmates, so long as moments of counsel do not devolve into “show me
your code” or “write this for me.” You may not, to be clear, examine the source code of classmates.
If in doubt as to the appropriateness of some discussion, contact the staff.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

1 < 18

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed (e.g., by some problem set or the final project). Viewing or copying
another individual’s work (even if left by a printer, stored in an executable directory, or accidentally
shared in the course’s virtual terminal room) or lifting material from a book, magazine, website, or other
source—even in part—and presenting it as your own constitutes academic dishonesty, as does showing
or giving your work, even in part, to another student.

Similarly is dual submission academic dishonesty: you may not submit the same or similar work to this
course that you have submitted or will submit to another. Moreover, submission of any work that you
intend to use outside of the course (e.g., for a job) must be approved by the staff.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the staff.

You may even turn to the Web for instruction beyond the course’s lectures and sections, for references,
and for solutions to technical difficulties, but not for outright solutions to problems on problem sets or
your own final project. However, failure to cite (as with comments) the origin of any code or technique
that you do discover outside of the course’s lectures and sections (even while respecting these
constraints) and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly.

Grades.

Your work on this problem set will be evaluated along three primary axes.

Correctness. To what extent is your code consistent with our specifications and free of bugs?
Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

2 < 18

Getting Started.

 For this problem set, you will make something out of nothing. Just because you can.

 Oh and this is your last problem set ever for CS 50.

 :-(

 For this problem set, consider downloading and installing Firefox followed by Firebug,
JavaScript Debugger, Live HTTP Headers, and Web Developer, each of which is available on the
course’s website under Software. Once installed, Firebug, JavaScript Debugger, and Live HTTP
Headers will appear as options in Firefox’s Tools menu, and Web Developer will appear as a
toolbar beneath Firefox’s address bar. See if you can figure out how they each work, simply by
playing. For tutorials on some of them, head to the URL below.

 http://code.google.com/support/bin/answer.py?answer=87133&topic=11364

 Odds are you’ll find all of these tools valuable.1

 For this problem set, your work must ultimately render and behave the same on at least two
major browsers:

 Google Chrome 0.x
 Firefox 3.x
 Internet Explorer 7.x
 Opera 9.x
 Safari 3.x

 Be sure, then, to test your work thoroughly with at least two browsers. It is fine, though, to rely

on just one operating system. Make sure that your teaching fellow knows which browsers to use
whilst evaluating your work.

 SSH to cloud.cs50.net and create a directory called pset8 in ~/public_html/. (Remember

how?) Navigate your way to ~/public_html/pset8/, and then run ls. You should see
nothing.2 Just as you began this semester by writing programs from Scratch scratch, so will you
end this semester the same way. Consider the training wheels off!

1 Speaking of tools, if you would like to be adventurous and develop this whole project on your own Mac or PC, you might also
like XAMPP, also available on the course’s website under Software. Just realize that, come submission time, your code and
database must ultimately work and live on cloud.cs50.net.
2 See, there’s that nothing we mentioned.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

3 < 18

 Your mission for this problem set is to implement a mashup that integrates Google Maps with
Google News with a MySQL database containing 42,073 unique zip codes. But first, some
inspiration!

 If you’ve a friend who owns a Nintendo Wii (that’s connected to the Internet), see if you can invite

yourself over there to do some “research.” Ask your friend to start up the News Channel, then
click National News with the Wiimote, then click any of the articles, then click Globe in the
screen’s bottom-right corner. Notice how you can spin the Earth by clicking A and dragging,
thereby revealing stacks of articles from different cities and geographic areas. And by zooming in
and out with + and –, you can reveal more or fewer stacks. By clicking a stack’s icon, you can then
read local news.

 If you haven’t said friend, watch this instead, paying close attention between 01:04 and 01:50:

 http://www.youtube.com/watch?v=uO6J8ryTKYk

 The challenge ahead isn’t to implement precisely that interface but the spirit thereof in the

(largely) two-dimensional world of Google Maps! Specifically, your mashup will present users with
a Google Map, next to which will be a form. Upon submitting an address via that form, users will
be whisked away to that location on the map, which will be sprinkled with markers representing
news articles pertaining to the area. Clicking a marker will trigger a balloon to appear, inside of
which will be links to those articles.

 By problem set’s end, then, you’ll have a tool whose URL you can share with family and friends

back home (that they might actually find useful)!

 Alright, where to begin?

 Surf on over to Google Maps at http://maps.google.com/. Input something like 02138 into
the page’s form and click Search Maps. You should find yourself whisked away to a familiar
location. Well that was easy. Notice, though, that the page’s URL did not change. I wonder how
they did that!3

 Now input 28.42, -81.58 instead. Perhaps you’d rather be there?

 It looks like Google Maps understands zip codes as well as longitude and latitude. Interesting...

 If unfamiliar with longitude and latitude, feel free to read up, albeit in more detail than is

necessary for this problem set:

 http://en.wikipedia.org/wiki/Longitude
 http://en.wikipedia.org/wiki/Latitude

3 Cough cough, Ajax.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

4 < 18

 Now surf on over to Google News at http://news.google.com/. Click the link to Advanced
news search at top-right, and notice how you can Return only articles about a local area. Input a
zip code like 02138, and you should see news local to Cambridge. Notice the link to RSS on the
page’s left-hand side. Click it, and you should find yourself at a URL like the below (which,
unfortunately, wraps on to two lines):

 http://news.google.com/news?svnum=10&as_scoring=r&ned=us&as_drrb=q&as_qdr=

&as_mind=22&as_minm=10&as_maxd=21&as_maxm=11&geo=02138&aq=f&nolr=1&output=rss

 Within that otherwise cryptic string should be a familiar value (i.e., 02138). Hm, that could be

useful...

 Alright, clearly there’s a way to whisk a user away to a particular point on a map, using zip codes
or longitude and latitude. But Google News expects only zip codes, so how to find zip codes that
are proximal to another? It’d be nice if we had a big list...

 Let me Google that for you:

 http://letmegooglethatforyou.com/?q=zip+code+database+list

 Among the results should be a link to zip-codes.com. Head to this page in particular:

 http://www.zip-codes.com/zip-code-database.asp

 Look how much data you can get for $79.95.4 Don’t worry, we’ll pick up the tab. Notice, though,

that the data comes in multiple formats, among them CSV.5 That’s perfect, because we can easily
parse that programmatically!6

 To get a sense of what we bought, download this sample:

 http://www.zip-codes.com/files/sample_database/zip-codes-database-DELUXE-SAMPLE.zip

 Inside that archive, you’ll find a file called zip-codes-database-DELUXE-SAMPLE.csv (among

others). Go ahead and open it with Excel (or any old text editor). Notice that the database
contains 49 fields (i.e., columns), each of which is defined for you in the CSV file’s first row. If you
open up ZipCodeDatabaseSpecifications-Deluxe.pdf from that same archive, you’ll find
that pages 2 and 3 elaborate on those fields’ types. That same PDF, for reference, is available at
the URL below.

 http://www.zip-codes.com/files/documents/ZipCodeDatabaseSpecifications-Deluxe.pdf

4 Why go Standard when you can have Deluxe? Actually, we wanted population data, so we got upsold.
5 http://en.wikipedia.org/wiki/Comma-separated_values
6 Keep an eye out for such things in the future!

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

5 < 18

 You’re welcome to examine the actual CSV file that we bought, but you’ll find that its 79,960 rows
won’t fit in Excel:7

 http://cs50.net/pub/share/pset8/zip-codes-database-DELUXE.csv

 By default, incidentally, Excel doesn’t show leading zeroes in CSV files. And so some of the zip

codes in these CSV files’ first columns might appear to be fewer than five digits, even though they
are not. If you open those same files with any old text editor, you’ll see leading zeroes!

 So, thanks to its 79,960 rows and 49 columns, the CSV file we bought is 28 MB. Yet most of those

fields you won’t even need. Interesting though it may be to know how many Hawaiians lived in
02138 as of the 2000 Census, you don’t really need to know that for this problem set.8 You’re only
going to waste time later on if you have to sift through so many unneeded bytes while searching
for zip codes. So let’s “pre-process” the data. It’s a pain to manipulate strings in C, so we’ll
use PHP.

 Write, in a file called import in ~/public_html/pset8/, a “script” (i.e., an interpreted

program) that imports these fields (and only these fields) into a MySQL database:9

i. ZipCode
ii. Population
iii. Latitude
iv. Longitude
v. State
vi. City

 The table into which you import these fields must be called zips, and it must live in the database

called username_pset8 that we pre-created for you. You may connect to that database using
the same username (DB_USER) and password (DB_PASS) that you used for Problem Set 7.

 We leave the design of zips up to you, but you might find some good hints in that PDF from

zip-codes.com. Take care not to allocate more space than you need to for fields. And take care
to define, at least, a primary key. Realize, though, that the CSV file actually contains some zip
codes multiple times, each of whose rows might have identical values for Latitude and
Longitude but different values for, say, CityAliasName. (The file contains 42,073 unique zip
codes.) Do not insert any zip code into your table multiple times. We leave it to you to figure out
how.

7 Someone decided to limit Excel to 216 = 65,536 rows (and 28 = 256 columns)!
8 But the answer is 25!
9 Be sure to import the fields with precisely these names, as defined by the CSV file’s first row. If you find, while implementing
your mashup, that you would like to make use of other fields from the CSV file, you may modify import and zips to
accommodate. For space’s sake, though, do not import more fields than you actually plan to use.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

6 < 18

 Once you have a schema (i.e., design) in mind, you’ll, of course, need to CREATE the table,
certainly before you can INSERT any rows into to with your script. You are welcome to CREATE
the table “at runtime” via a call to mysql_query in your own script or in advance via
phpMyAdmin. Recall that phpMyAdmin is available at the URL below.

 http://cloud.cs50.net/phpMyAdmin/

 You’ll probably want to use phpMyAdmin quite a bite while developing your script. Odds are

you’ll make a mistake at least once and want to ALTER or DELETE rows from your table so as to
start fresh. You’ll likely find phpMyAdmin’s Browse, Structure, SQL, Empty, and/or Drop tabs of
particular help.

 Note, incidentally, that we did not ask you to name your script import.php. Whereas

webservers generally require that PHP scripts’ names end in .php for execution, your shell
(i.e., your prompt) only requires that they start with a “shebang,” # followed by !, followed by the
full path to php (PHP’s interpreter).

 How to find that full path? Execute the below.

 which php

 Aha! You should see that php lives in /usr/bin/php on cloud.cs50.net. Go ahead, then,

and put precisely this line atop import:10

 #!/usr/bin/php

 Take care not to put any characters at all (even whitespace) before this shebang. Even with the

shebang present, you still need to tell php to interpret what follows as actual code (rather than
just text, a la XHTML, that should be outputted raw). The second line of your file should thus be:

 <?php

 And your last line should be:

 ?>

 It’s everything in between that we now leave to you. Implement import! Rather than access

that CSV file via its URL on cs50.net, though, read from the cloud’s local copy in
/home/cs50/pub/share/pset8/ (much like you did card.raw for Problem Set 5 and words
for Problem Set 6). After all, networks are even slower than disks. Odds are, you’ll want to
befriend PHP functions like fopen, fgetcsv, and fclose. And don’t forget old friends like
mysql_connect, mysql_select_db, mysql_query, and mysql_fetch_array.

10 Alternatively, you could omit the shebang and execute import with `/usr/bin/php import`. But don’t.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

7 < 18

 Once done, you should be able to populate that table called zips in username_pset8 by
executing, quite simply, the command below after chmod’ing import 700:

 import /home/cs50/pub/share/pset8/zip-codes-database-DELUXE.csv

 As this usage implies, you should accept one (and only one) command-line argument: the path to

a file to import. You might thus want to read up on, at least, $argv:

 http://us3.php.net/manual/en/reserved.variables.argv.php

 Incidentally, you might want to try importing a much smaller file than ours first, lest you fill your

table with thousands of mistakes. Just fill a text file with some values and commas!

 Once you’ve imported all 42,073 unique zip codes from zip-codes-database-DELUXE.csv,

leave zips alone. You’ll need it later.

 Okay, it’s now time to turn our (well, your) attention to the Google Maps API (Application
Programming Interface), which “lets you embed Google Maps in your own web pages with
JavaScript,” provided you’ve signed up for an “API key.” Head to

 http://code.google.com/apis/maps/

 and follow the link to Sign up for a Google Maps API key. When asked for My web site URL,

provide

 http://cloud.cs50.net/~username/

 as your answer, where username is your own username, and then click the button labeled

Generate API Key. On the page that appears next, you should be thanked and informed of your
key. Remember that key! Well, don’t actually try to memorize it. But copy and paste it
somewhere safe.11 That same page should also provide you with “an example web page to get
you started on your way to mapping glory.” Well that sounds fun. Go ahead and copy that
XHTML (and JavaScript) to your clipboard too, and paste it into a file called index.html in
~/public_html/pset8/.12 Then visit the URL below.

 http://cloud.cs50.net/~username/pset8/

 Damn. Forbidden, right? Well that problem has nothing to do with Google. Go fix! (Remember

how?)

 All better now? No? Okay, fine. “Don’t forget to chmod ~/public_html/pset8/ as 711 and
~/public_html/pset8/index.html as 644.” Trying to cut the cord here, you know!

11 If you nonetheless lose track of your key, you can re-generate it via this same process. But it’s not nearly as much fun the
second time around.
12 If using Nano, you might want to disable automatic indentation before pasting by hitting Esc followed by i; you can re-enable
it after pasting by hitting the same sequence again.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

8 < 18

 Okay, at this point you should have a little baby map embedded in an otherwise unremarkable
page. But, hey, you can at least drag it around. Let’s learn how to make it more interesting. Head
over to

 http://code.google.com/apis/maps/documentation/

 and head straight to the section called Audience. You should ignore everything else under Table

of Contents. Follow the link to Basic Map Objects and read the whole page! You’ll be introduced
to not only to cartography but also to “info windows.” Oh and by “read” we mean actually read.
One aim of this problem set is to prepare you for life after 50.13 It’s time to RTFM! After 50,
documentation plus examples will be your best friends when it comes time to learn some new API
or some new language altogether. In fact, as you read up on this particular API, be sure to view
each and every one of Google’s examples. And don’t simply play; view each’s source! You’ll be
amazed how much you can infer.

 If you’ve any questions about what you’ve read, simply ask via the course’s bulletin board!

 Before we move on, let’s have you apply what you just learned by making your own map more

interesting. It’s fine, incidentally, to leave all of your JavaScript in index.html or relocate it to
some external .js file.

 Center your map on your hometown instead of Palo Alto. And feel free to alter your map’s default

zoom level at the same time. If you don’t know any longitudes or latitudes offhand, follow the
directions in Section 3 of this tutorial to find some using Google Maps itself:

 http://code.google.com/support/bin/answer.py?answer=74725&topic=11364

 Plant an info window at the place you grew up and fill it with some XHTML that includes both

some text (e.g., your name) and at least one clickable link (to, e.g., your hometown’s website).

 Feel free, too, to make your map bigger or perhaps center it in your page. Perhaps supplement

the map with some logo or text.

 Head now to

 http://code.google.com/apis/maps/documentation/events.html

 to introduce yourself to “events,” “listeners,” and “closures.” As before, play with and read

through each and every example!

13 Pun intended.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

9 < 18

 Now head to

 http://code.google.com/apis/maps/documentation/controls.html

 and read up on “controls” and “types." Once you have a sense of what’s possible, add one or

more controls to your map and feel free to alter your map’s type.

 Now teach yourself about “overlays” and “markers” by heading to:

 http://code.google.com/apis/maps/documentation/overlays.html

 You can stop reading once you hit “polylines,” but don’t let us stop you if you’d like to read on.

 Almost done with the reading! Head to

 http://code.google.com/apis/maps/documentation/services.html

 for an introduction to “services” and “geocoding” specifically. You can stop once you hit “Street

View,” but, again, feel free to read on.

 It’s now time to enhance your own map once more. Add to your map a text field and button.

When the latter is clicked, the user should be whisked away (if possible) to whatever location has
been typed in the former. There’s no need to plant a marker or info window at that spot, but
you’re welcome to do so. You might find the example called geocoding-simple.html of
particular help.

 Take note of, but don’t (yet) read in its entirety, the API Reference for Google Maps:

 http://code.google.com/apis/maps/documentation/reference.html

 Overwhelming though it may seem at first glance, there’s a lot of good stuff there, as that page

defines every one of the API’s classes, types, and functions. It’s not terribly easy to find things
there, though, so ctrl-f and the three columns of links atop the page may prove your best friends.
Think of this reference as the man page for the whole Google Maps API.

 And now it’s time to bring (well, mash) all this together. Enhance your map in such a way that

when the user searches for a location (via that same text field and button you just added), not
only is he or she whisked away to that location (if possible), the resulting map is also sprinkled
with up to n ≤ 5 markers representing the n largest cities within view. Each city’s marker, when
clicked, should trigger an info window to appear containing clickable links to news articles
pertinent to the city.

 Those articles’ titles and links, of course, should be culled via RSS from Google News based on the

zip code(s) within view.

 How to make all of this happen? Well, your map already knows how to whisk users away to some

location provided via that text field. It sounds like, once done whisking, your map will need to go

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

10 < 18

GET, wink wink, some articles. Because of “same-origin policies,” your JavaScript code cannot
contact Google News directly.14 But it can contact, say, a PHP file that lives on cloud.cs50.net
(where your JavaScript came from). Perhaps you could write a PHP script (whose name ends in
.php) that accepts some HTTP parameters (say, the coordinates of a map’s southwest and
northeast corners), figures out which zip codes live within the rectangle defined by those corners,
and retrieves RSS news feeds for n ≤ 5 of those zip codes? Think of this PHP script as your
JavaScript’s proxy to Google News. Of course, some cities have multiple zip codes, and you need
to fetch news from the n largest cities (not zip codes) within view, so you might need to sum a few
zip codes’ populations. But that should be doable, perhaps via GROUP BY and SUM in SQL or via
simple arithmetic in PHP.

 How to contact that PHP file via JavaScript? Well, you might want to re-examine

xhr-requests.html, which we’re certain you looked at while reading up on this API’s services:

 http://code.google.com/apis/maps/documentation/services.html#XML_Requests

 Note that the example relies on data.xml, whose structure you can see here:

 http://code.google.com/apis/maps/documentation/examples/include/data.xml

 You won’t, of course, be downloading a static XML file (as the example does data.xml), but

surely your PHP script could spit out some XML that you yourself have designed? Incidentally, so
that your PHP code does not spit out a “MIME type” of text/html, as it does by default, you’ll
likely want to include a line like the below atop your PHP file:

 header("Content-type: text/xml");

 How to retrieve RSS from Google News and return just some articles and URLs in your own XML

format? Well, this article you might like:

 http://www.ibm.com/developerworks/library/x-simplexml.html

 Odds are, you’ll need to generate XML that has a bit more structure (i.e., nesting) than that

example’s data.xml. After all, your PHP script will need to return multiple articles (i.e., titles and
URLs) for multiple cities.

 How to navigate your PHP script’s XML (or, really, DOM) in JavaScript once returned to the

browser? You might find that this example gets you started:

 http://www.captain.at/howto-ajax-process-xml.php

14 http://en.wikipedia.org/wiki/Same_origin_policy

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

11 < 18

 And here’s an example that is similar in spirit but also discusses the PHP side:

 http://www.w3schools.com/php/php_ajax_xml.asp

 Do not hesitate to turn to the Google itself for examples or tutorials beyond these. Or, for that

matter, to the course’s bulletin board or staff. Just because you’ve not done something before
doesn’t mean that you can’t figure out how!

 Once you’ve gotten your map working, go back and ensure that it responds to events like

dragend, moveend, resize, and/or zoomend by clearing any and all markers and then re-laying
up to 5 representing the new area’s news. You may want to re-visit the section on event listeners
over here:

 http://code.google.com/apis/maps/documentation/events.html#Event_Listeners

 Don’t forget that your work must render and behave the same in at least two major browsers!

 Under no circumstances should your mashup generate JavaScript runtime errors. Be sure to check

return values and for null and undefined where appropriate! For help chasing down bugs in
your JavaScript code, incidentally, open up JavaScript Debugger (assuming you’ve installed it)
under Tools in Firefox and watch its Interactive Session while playing with your mashup!

Submitting Your Work.

 Ensure that your work is in ~/public_html/pset8/. Then execute the command below, where
username is your own username, in order to dump your database to disk for us; input your
database’s password (i.e., your DB_PASS) when prompted.

 mysqldump -u username -p username_pset8 > ~/public_html/pset8/username_pset8.sql

 Now submit your work by executing the command below.

 cs50submit pset8 ~/public_html/pset8/

 Thereafter, follow any on-screen instructions until you receive visual confirmation of your work’s

successful submission. You may re-submit as many times as you’d like; each resubmission will
overwrite any previous submission. But take care not to re-submit after the problem set’s
deadline, as only your latest submission’s timestamp is retained.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

12 < 18

CS50 for Your Body.

 Take one of life’s lessons with you. Wear CS50. The course’s store is now open for business.15

 http://cs50.net/store/

 Orders can be termbilled.

 Couldn’t get enough of our problem sets this semester? Want to forever remember those long
Friday nights you spent optimizing your binary tree implementation of Mispellings? Yellow border

adds extra sexiness.

15 Why does a computer science course have its own line of clothing? That is a very good question.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

13 < 18

Surprise your friends with your extreme geekiness. Show them what it takes to be a real athlete!
Material is soft and guaranteed to make you want to ooh and aah. Six-pack not included.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

14 < 18

The classic design, now available as a sweatshirt in Navy blue.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

15 < 18

 Property of CS50 Sweatshirt with a hood.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

16 < 18

Property of CS50 sweatpants to complement your sweatshirt.

Computer Science 50: Introduction to Computer Science I
Harvard College

Fall 2008

17 < 18

kthxbai

