
Computer Science 50
Fall 2009
Scribe Notes

Week 1 Wednesday: September 9, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–5:00) 2

2 Scratch Meets C (5:00–20:00) 2

3 NICE and Teh Cloud (20:00–41:00) 4

4 More Code! (41:00–90:00) 6

1

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Wednesday: September 9, 2009
Andrew Sellergren

1 Announcements (0:00–5:00)

• This is CS 50.

• 1 handout. Ignore the line numbers next to the code–they’re just for
reference.

• Office Hours this Wednesday and Thursday to talk about the course or
your Scratch projects.

• Supersections on Monday, Tuesday, and Wednesday. For this first week,
we’ll simply be holding large sections which anyone is welcome to attend.
For the weeks to follow, you’ll be attending your assigned section. To
get your section assignment, follow these instructions. Note that we offer
three tracks of sections, one for “those less comfortable,” one for “those
more comfortable,” and one for those in between. The FAS Sectioning
tool will show some 30+ sections and each will be designated as one of
these three categories according to its comments field. Realize that you
can’t go wrong with the “in between” section.

• Sensor boards. These are only for the Hacker Edition, so don’t feel pres-
sured to try them out.

• The data we gather from the survey for Problem Set 0 is really just for fun.
We want to visualize that data in several different ways, for example, a
Google Maps mashup of birth cities. Of the 30 people who have submitted
the problem set so far, most do not own an iPhone, most are running
Windows, and none of the Mac users have upgraded to Snow Leopard.
It’s a good thing that most do not have an iPhone, because it makes
617-BUG-CS50 worthwhile! Coming soon also will be wake-up calls and
dining hall menus.

2 Scratch Meets C (5:00–20:00)

• Unlike Java and scripting languages like PHP, C is very low-level, giving
you fine-grained control over where you put things in memory. It’s just
one level removed from assembly language, which is just one level removed
from binary! In addition to affording you great control, C offers you great
opportunity to screw up. Most of the exploits and hacks, even today, are
the result of mistakes that programmers made in C or C++.

• Recall our first C program from last week. It’s a good example of a
statement in C:

#include <stdio.h>

int
main(int argc, char *argv[])

2

http://www.cs50.net/sections/

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Wednesday: September 9, 2009
Andrew Sellergren

{
printf("hello, world!\n");

}

• All of the same building blocks in Scratch—statements, loops, boolean ex-
pressions, conditions—exist in C as well. The only real difference is in how
you interact with the program you’re making. Many of the errors you’ll
make in C are simply syntax errors if you forget a semicolon somewhere,
for example.

• Boolean expressions are much the same in C as in Scratch. The less-than
(<) and greater-than (>) operators are the same. One difference is that
the “and” operator is represented as && in C.

• Conditions in Scratch, which were represented by interlocking puzzle pieces,
are encapsulated by curly braces in C. Instead of nesting if–else blocks,
you’ll be writing if–else-if–then blocks.

• Instead of the forever loop in Scratch, we have the syntax while(1) in
C. What does this mean exactly? Well, the code inside the while block
will repeatedly execute as long as its condition is true and, since 1 is syn-
onymous with true, it will execute indefinitely. Hence, forever. Generally
infinite loops are not desirable.

• The repeat block in Scratch can be represented by a for loop in C like so:

for (int i = 0; i < 10; i++)
{

printf("O hai!\n");
}

These lines of code simply cause “O hai!” to be printed 10 times. The
for loop continues to execute as long as i is less than 10 and since i is
incremented by 1 every time the loop executes (i++), after 10 executions,
i will no longer be less than 10.

• Variables in C are fairly straightforward:

int counter = 0;

Here we’re declaring what type of variable we want (int), the name of the
variable (counter), and its default value (0).

• Why is it called printf rather than just print? The f stands for formatted
because printf is used to print formatted strings. For example:

printf("%d\n", counter);

3

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Wednesday: September 9, 2009
Andrew Sellergren

The %d tells printf that what we want to display is a numerical value (d
for decimal).

• Recall that we used a variable called “inventory” in Scratch to store a series
of related variables—fruits in the case of FruitcraftRPG. This inventory
can be implemented as an array in C:

char *inventory[SIZE];
inventory[i] = "Orange";

In C, because we’re so close to the hardware, we have to tell the compiler
how big we want our array to be when we first declare it, hence the
reference to SIZE, which is actually a constant that will represent the
number of bits. When we want to store something in the array, we access it
using bracket notation. The second line above stores the string “Orange”
at the ith location in the array. char * by the way, is the computer
scientist name for string, or sequence of letters.

• A big gotcha: in programming, = doesn’t generally mean equality, but
rather assignment. That is, it means take the thing on the right and put
it in the thing on the left. So programmers often say “gets” rather than
“equals” when reading =.

3 NICE and Teh Cloud (20:00–41:00)

• There was a time when programming meant writing the actual 0’s and
1’s on punchcards rather than plain English to be fed into a compiler. In
those days, you would gather your punchcards together, take them to the
Science Center where they would be fed into the mainframe computer,
and leave them overnight to run. If your program was buggy, you would
only find out the next morning when the results of your program were just
one long debugging report.1

• At the end of the day, the computer still only understands 0’s and 1’s. This
is why we have the process of compiling, which turns your programming
syntax into binary. We did this last week when we ran the gcc command.

• What’s neat about Macs is that they have a built-in terminal because
they’re based on Unix, which is essentially a command-line interface (CLI).
So if you have a Mac, you can simply open up the Terminal application. If
you’re running Windows, open up your SSH client—PuTTY, for example.

• Instead of attempting to normalize all of your personal computers, we’ve
provided a standardized development environment on Harvard’s servers.

1My mom continues to remind me to this day that she was one of the original programmers
who wrote in punchcards. She usually reminds me of this when I’m showing her how to use
iTunes.

4

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Wednesday: September 9, 2009
Andrew Sellergren

This is NICE. No, really, it’s NICE, i.e. New Instructional Computing
Environment. It’s been “new” for about 10 years now, so don’t ooh and
ahh just yet.

• We begin our work on NICE not just for historical reasons, but also be-
cause at semester’s end, you’ll have a place to host your programs, at
least until you graduate. Toward the middle of the semester, however,
we’ll be migrating from NICE to CS 50’s cloud, which is a fancy term
for the cluster of servers that we ourselves have set up.2 CS 50’s cloud
consists of a few Dell servers with 32 GB of RAM and 6 TB of storage
space, along with an Apple XServe. We’ll give you your own accounts on
cloud.cs50.net.

• Why do we call them clusters? Well, with external IP addresses and DNS
hostnames like nice.fas.harvard.edu and cloud.cs50.net, we give the
illusion that you’re connecting to just one computer each time. That’s not
the case, however. You may be connecting to any one of several computers,
each of which has access to your files.

• So to connect to NICE or Teh Cloud,3 you’ll open up Terminal or PuTTY
and type ssh username@nice.fas.harvard.edu. This tells your com-
puter to open an encrypted connection to the server.

• Not to worry, all these commands will be rehashed in the PDF for Problem
Set 1. The command ls, for example, lists the content of the folder that
you’re currently in. mkdir makes a directory, cd changes the directory
you’re in. To write a program, you’ll open a text editor—nano is the
one we’ll recommend if you’re new to all this. So type nano hello.c for
example.

• If we now type out the lines of code we introduced last week and save
the file, we can compile it by typing gcc hello.c. This will create a file
called a.out which will have an asterisk next to it, indicating that it’s
executable. You can open a.out in a text editor, but you’ll just see a
bunch of gobbledygook, otherwise known as binary.4 Be careful if you
open a binary file like this, because any ASCII characters you insert will
likely break your program.

• A short list of Linux commands:

– cd Change directory.

– cp Copy.
2It was mostly me. David doesn’t really know what he’s doing, to be honest. He’s mostly a

figurehead. Actually, I usually write these scribe notes before class and he just follows along.
Oops, I think I’ve said too much.

3Yes, that’s twice now. It’s “Teh,” not “The.” Psth, n00b.
4Allow me to put the rumors to rest. Yes, I can read straight binary. Remember Tank

from The Matrix? He’s loosely based on me. I say “loosely” because I would never allow a
punk traitor like Cypher to get the best of me.

5

http://www.google.com/search?q=define%3Agobbledygook

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Wednesday: September 9, 2009
Andrew Sellergren

– ls List files.

– mkdir Make directory.

– mv Move/rename file.

– pwd Present working directory (your current location)

– rm Remove/delete file.

• Note if we run gcc with the option flag -o followed by a new name for our
program, perhaps hello, the output of the compiler will be named hello
rather than a.out.

• Another useful shortcut on Linux is to begin typing a command and hit
TAB which will auto-complete your command or show you a list of possible
commands.

• Good design prescribes that we place our code in multiple related files
rather than one large file we have to scroll through. But how do we
organize these files appropriately? And how does the compiler know which
files to include when it’s compiling? This where the Makefile comes in,
which are instructions provided to the make command. This accomplishes
the same compiling as the gcc command, but with more structure and
any additional instructions we choose to provide.

• A short list of text editors:

– Nano

– Vim

– Emacs

4 More Code! (41:00–90:00)

• Let’s say we want to play with this week’s source code in our home direc-
tory. We’ll run the following command:

cp -r ~cs50/pub/src/lectures/1/ .

The tilde (~) followed by cs50 designates CS 50’s home directory. Then,
we know the directory structure (because we’ve told it to you). And inside
the lectures directory, there are directories for each of the weeks of the
course. So we’re going to copy all the files from the week 1 directory to
our current directory, which we designate with a single period. The -r
flag stands for recursive, which tells the command to copy subdirectories
as well.

• Let’s take a look at the pre-prepared hai1.c:

6

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Wednesday: September 9, 2009
Andrew Sellergren

/**
* hai1.c
*
* Computer Science 50
* David J. Malan
*
* Says hello to the world.
*
* Demonstrates use of printf.
***/

#include <stdio.h>

int
main(int argc, char *argv[])
{

printf("O hai, world!\n");
}

All of the junk at the top between the /* and the */ are what are called
comments. They’re ignored by the compiler, but are very useful to pro-
grammers who are reading your source code (including yourself). We will
insist that all of your programs be well-commented!

• Note that our code is indented in key places. Everything which is encap-
sulated in the if condition is indented to indicate so. The computer most
likely doesn’t care about this indentation but it makes the code easier for
us to read.

• We will also insist that your code be pretty-printed. That means, for one,
that your lines of code never extend beyond 80 characters. That way, it
will display properly on most all screens.

• One feature of the text editors we’ve mentioned, as opposed to say, Notepad,
is syntax highlighting. By default, Nano and Vim will make assumptions
about the roles of certain words you’ve written, and highlight variable
types in one color, comments in other, etc. It makes for easier reading.

• So what exactly is going on with the first real line of code in our program
above? It’s called a pre-processing directive. What we’re asking the com-
piler to do is to go look for a library of code called stdio.h and compile
it with our program. This library includes the definition of our printf
function.

• Why is the file extension .h instead of .c? The file we’re asking to include
is actually a header file which simply contains a summary of information
about the functions defined in the actual file. This is easier for a human
to digest. The actual function definitions are most likely in stdio.c.

7

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Wednesday: September 9, 2009
Andrew Sellergren

• Programs are comprised of functions, which you can think of as miniature
programs. Functions in C are the equivalent of scripts in Scratch. And
just as the green flag is the default script in Scratch, so is main the default
function in C. What about all the other junk along with main? We’ll gloss
over this for now. Just consider it a copy-paste job for the moment.

• Let’s take a look at hai2.c:

/**
* hai2.c
*
* Computer Science 50
* David J. Malan
*
* Says hello to just David.
*
* Demonstrates use of CS 50’s library.
***/

#include <cs50.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{

string name = "David";
printf("O hai, %s!\n", name);

}

What’s the difference between this and hai1.c? Hopefully you can figure
out that this one says hi only to David. How do we do this? We’re simply
assigning the value of “David” to a variable of type string. Be careful:
in C, you must encapsulate strings in double quotes, not single quotes (in
HTML, it doesn’t matter).

• A little more interesting is the third version, hai3.c:

/**
* hai3.c
*
* Computer Science 50
* David J. Malan
*
* Says hello to whomever.
*
* Demonstrates use of CS 50’s library and standard input.
***/

8

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Wednesday: September 9, 2009
Andrew Sellergren

#include <cs50.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{

printf("State your name: ");
string name = GetString();
printf("O hai, %s!\n", name);

}

Here, we invoke a function called GetString(), which, as its name im-
plies, gets a string from the user. So our functions not only can execute
statements, they can return their output as well. What we’re doing is ask-
ing to store the return value of GetString() in our variable called name.
Then we’ll print out name as before.

• When we try to compile hai3.c with the command gcc, we get an error.
Notice that we’re asking not only for the stdio.h library, but also the
cs50.h library. This is where the definition of GetString() resides. But
how does the compiler know where to look for this? We need to tell it by
adding the flag -lcs50 when we run gcc. This means to link the CS 50
library when we’re compiling.

• What do you do if you don’t know how a function works? RTFM!5 Specif-
ically, check out the one on our reference page. The page for printf, for
example, contains all the formatting codes for inputs (e.g. %f, %c, etc).
The pages also include sample code and function signatures, which are
tremendously useful.

• Take note of these escape sequences:

– \n

– \r

– \t

– \’’

– \\

The first two are caught in the war between Linux and Windows. The
first is a newline return, which is just like hitting Enter. The second is
a carriage return which is like hitting Enter and then repositioning the
cursor all the way to the left on the screen. The third is a tab, the fourth
quotation marks, the fifth is how you place a literal backslash.

5The F stands for frabjous.

9

http://www.cs50.net/resources/cppreference.com/

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Wednesday: September 9, 2009
Andrew Sellergren

• Let’s try doing some math in math1.c:

/**
* math1.c
*
* Computer Science 50
* David J. Malan
*
* Computes a total but does nothing with it.
*
* Demonstrates use of variables.
***/

#include <stdio.h>

int
main(int argc, char *argv[])
{

int x = 1;
int y = 2;
int z = x + y;

}

If we compile and run this program, nothing happens. Is it working prop-
erly? In fact, it is, but it gives no output since we haven’t told it to.
Also, the compiler will yell at us for not doing anything with the variable
z. Our next version, math2.c will actually print out the result of our
computation.

• Let’s take a look at some different variable types with math3.c:

/**
* sizeof.c
*
* Computer Science 50
* David J. Malan
*
* Reports the sizes of C’s data types.
*
* Demonstrates use of sizeof.
***/

#include <stdio.h>

int
main(int argc, char *argv[])

10

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Wednesday: September 9, 2009
Andrew Sellergren

{
// some sample variables
char c;
double d;
float f;
int i;

// report the sizes of variables’ types
printf("char: %d\n", sizeof(c));
printf("double: %d\n", sizeof(d));
printf("float: %d\n", sizeof(f));
printf("int: %d\n", sizeof(i));

}

The function sizeof gives us the number of bytes required to store each of
these variable types. For historical reasons, a long is 4 bytes, the same as
an int. If you want to store a 64-bit number, you’ll need a long long or
a double. How big a number can an int store? If it’s unsigned, meaning
it can’t store negatives, it can store up to the number 4 billion. A float,
although 4 bytes, can’t store up to 4 billion because it uses some bits to
store the numbers after the decimal place.

• Now, for some fun. There’s a concept in programming (and frankly,
in life) called obfuscation. With clientside programming languages like
JavaScript, obfuscation is a technique of making your code purposely con-
fusing so that it’s hard to steal. There are even some obfuscation contests
out there for C. To finish, we’ll give you an example of an obfuscated
program:

// http://www.ioccc.org/years.html

#include "stdio.h"
#define e 3
#define g (e/e)
#define h ((g+e)/2)
#define f (e-g-h)
#define j (e*e-g)
#define k (j-h)
#define l(x) tab2[x]/h
#define m(n,a) ((n&(a))==(a))

long tab1[]={ 989L,5L,26L,0L,88319L,123L,0L,9367L };
int tab2[]={ 4,6,10,14,22,26,34,38,46,58,62,74,82,86 };

main(m1,s) char *s; {
int a,b,c,d,o[k],n=(int)s;

11

Computer Science 50
Fall 2009
Scribe Notes

Week 1 Wednesday: September 9, 2009
Andrew Sellergren

if(m1==1){ char b[2*j+f-g]; main(l(h+e)+h+e,b); printf(b); }
else switch(m1-=h){
case f:

a=(b=(c=(d=g)<<g)<<g)<<g;
return(m(n,a|c)|m(n,b)|m(n,a|d)|m(n,c|d));

case h:
for(a=f;a<j;++a)if(tab1[a]&&!(tab1[a]%((long)l(n))))return(a);

case g:
if(n<h)return(g);
if(n<j){n-=g;c=’D’;o[f]=h;o[g]=f;}
else{c=’\r’-’\b’;n-=j-g;o[f]=o[g]=g;}
if((b=n)>=e)for(b=g<<g;b<n;++b)o[b]=o[b-h]+o[b-g]+c;
return(o[b-g]%n+k-h);

default:
if(m1-=e) main(m1-g+e+h,s+g); else *(s+g)=f;
for(*s=a=f;a<e;) *s=(*s<<e)|main(h+a++,(char *)m1);

}
}

Can you figure out what this program does? If you’re dying to know, just
compile it and find out. Or just watch the lecture video. Sheesh, do I
have to do everything for you?

12

	Announcements (0:00--5:00)
	Scratch Meets C (5:00--20:00)
	NICE and Teh Cloud (20:00--41:00)
	More Code! (41:00--90:00)

