
Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–10:00) 2

2 More About the Course (10:00–23:00) 3

3 Debugging and Casting (23:00–46:00) 4

4 Functions (46:00–41:00) 9

1

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

1 Announcements (0:00–10:00)

• This is CS 50.

• Check out our first foray into cryptography.

• Know that the root password for CS 50’s servers is a quadruple ROT13
encryption of the string “password.” If you can even begin to understand
what that means, you just might be able to hack into our servers. God-
speed.

• 1 new handout.

• Scribe notes are available for your convenience.1

• 9 late days are available to you throughout the semester. So if you need a
24-hour extension on any given problem set, just e-mail your TF to let him
know that you’ll be cashing one in. We encourage you to be conservative
with them at the start of the course since the problem sets tend to get
exponentially harder.

• Supersections on Monday, Tuesday, and Wednesday. For this first week,
we’ll simply be holding large sections which anyone is welcome to attend.
Our first walkthrough was held last night and was recorded and will be
placed online. The walkthroughs are meant to be authoritative how-tos
for the problem sets. Section assignments will be sent out this week. If
you have conflicts with your assigned section time, please feel free to get
in touch with us to resolve them.

• OHs and VOHs have begun! Office Hours are a long-standing tradition
of 50 and are held in the basement of the Science Center in the Terminal
Room where TFs cross names off the whiteboard and do their best to
handle everyone’s questions. Virtual Office Hours are in the same spirit,
only a different location. Login to the VTR if you feel that your question
needs a little more interactive help from the TFs and you don’t feel like
putting pants on to leave your dorm room.

• Soon the bulletin board will be active, but in the meantime feel free to
send your questions to help@cs50.net. Just be sure to be very specific in
your descriptions of the problems since we do get a lot of these e-mails.

• If you did the Hacker Edition of Problem Set 1, be sure to return your
sensor board after class and write your name on the slip of paper.

• Lunch with David! This tradition began last year and was funded by
Harvard, but even though Harvard’s days of wine and roses have come
to an end (for now), some generous alumni have stepped in to foot the

1Wow, so meta. It’s like holding up a mirror to another mirror. Or one of the acronyms
that never ends. Nova of Virginia Aquatics (NOVA)! Alright I’ll stop now.

2

http://www.youtube.com/watch?v=zdA__2tKoIU

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

bill. If you’re interested in joinining David and a handful of others in an
opportunity to make a large class much more intimate, then go here to
RSVP. Lunch with David will be held Fridays at 1:15 PM.

• Thanks to Harvard Computer Society (HCS) for holding their Demystify-
ing Linux seminar!

2 More About the Course (10:00–23:00)

• We know where you are. If you can’t find yourself, please don’t panic and
e-mail David. Our large number of requests seems to have annoyed Google
to the point where they might not be showing you, even if you properly
submitted your problem set.

• Check out the galleries of Scratch projects past!

• Wow, I can’t believe I managed to be in the VTR the same time as David.
If video had been enabled, you would’ve seen me lying in bed in my boxers
with cookie crumbs all over my stomach. My life is. . . well let’s not talk
about it.

• So, why did you decide to take CS 50? A few funny answers:

– “I feel like an idiot when I use computers”

– “Have never taken CS 50”

– “idk. lulz. Programmers are 1337”

– “SO I CAN HACK THE PLANET”

• The course policy on academic honesty is very clear and we take it very
seriously. Suffice it to say that collaborating with a friend while speaking in
English is perfectly acceptable, but holding a conversation in C or sharing
code via e-mail is not acceptable. See the Academic Honesty section of
the syllabus and on the second page of every problem set. We have our
computer savvy to help us find similarities between problem sets, so don’t
take a stupid risk. We’ve sent 25 students to the Ad Board in the past
few years. None of them enjoyed it, I can assure you. When you have
questions, please ask us. And when you are pressed for time, please use
your late days instead of taking shortcuts!

• On a lighter note, some fun facts about CS 50:

– Most of you have a “normal” mobile phone.

– None of you is using Nextel, because as everyone but David appar-
ently knew, they merged with Sprint.

– The House with the highest enrollment is Mather.2

2Mather : Winthrop :: a child on a tricycle : Lance Armstrong.

3

http://cs50.net/rsvp
http://www.cs50.net/map/
http://www.cs50.net/psets/
http://www.cs50.net/syllabus/syllabus.pdf

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

– Most are taking the course for concentration credit, but almost as
many are taking it as an elective.

– And, yse, most are you are “somewhere in between” or “among those
less comfortable.” And most of you have taken 0 CS courses previ-
ously!

• This course isn’t about learning any programming language in particular.
Although we will teach you the basics of C, PHP, and JavaScript, our hope
is that you will be empowered to learn any language you want at course’s
end. This is because all of the deep-rooted concepts of programming are
independent of the language they are written in.

3 Debugging and Casting (23:00–46:00)

• As the story goes, Grace Hopper, a well-known computer scientist of her
time, discovered an actual moth in the inner workings of the Mark II,
which was housed at Harvard’s Computation Library in 1947. Truth be
told, however, the term “bug” goes back farther than this, but, hey, it
makes for a nice story.

• Can you figure out the bug in this program?

/**
* buggy1.c
*
* Computer Science 50
* David J. Malan
*
* Should print 10 asterisks but doesn’t!
* Can you find the bug?
***/

#include <stdio.h>

int
main(int argc, char *argv[])
{

int i;

for (i = 0; i <= 10; i++)
printf("*");

}

Well, it prints 11 asterisks instead of 10 because the termination condition
is i <= 10 rather than i < 10. How about buggy2.c?

4

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

/**
* buggy2.c
*
* Computer Science 50
* David J. Malan
*
* Should print 10 asterisks, one per line, but doesn’t!
* Can you find the bug?
***/

#include <stdio.h>

int
main(int argc, char *argv[])
{

int i;

for (i = 0; i <= 10; i++)
printf("*");
printf("\n");

}

The second printf statement is not executed within the scope of the
loop because no curly braces are placed around it and the first printf
statement! Once we add the curly braces and recompile, we’ll get one
asterisk per line as we intended.

• Recall that all data in computers is stored in the form of zeroes and ones.
These zeroes and ones map to actual transistors which are either on or off
depending on if a switch is flipped that is either allowing or preventing
electricity from flowing. Thankfully, we can put several of these binary
bits together to make a byte which we can use to represent letters via the
ASCII mapping. To actually access the numerical value of a character
according to this mapping, we can use typecasting :

int i = (int) ’A’;
char c = (char) 65;

Here we’re storing a capital A as an int and the number 65 as a char.
What if we want to access the ASCII mapping of the whole alphabet? We
can do so using our ascii1.c program:

/**
* ascii1.c
*

5

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

* Computer Science 50
* David J. Malan
*
* Displays the mapping between alphabetical ASCII characters and
* their decimal equivalents using one column.
*
* Demonstrates casting from int to char.
***/

#include <stdio.h>

int
main(int argc, char *argv[])
{

int i;

// display mapping for uppercase letters
for (i = 65; i < 65 + 26; i++)

printf("%c: %d\n", (char) i, i);

// separate uppercase from lowercase
printf("\n");

// display mapping for lowercase letters
for (i = 97; i < 97 + 26; i++)

printf("%c: %d\n", (char) i, i);
}

65 and 97, you’ll recall, are the two mappings (for uppercase A and low-
ercase a, respectively) that it’s useful to remember. Beginning with these,
we’ll loop through the whole alphabet (incrementing i 26 times). Then
we’re printing a char followed by an int. The char placeholder is being
filled in with our int i cast as a char.

• Our next program does the same, but with a little better presentation:

/**
* ascii2.c
*
* Computer Science 50
* David J. Malan
*
* Displays the mapping between alphabetical ASCII characters and
* their decimal equivalents using two columns.
*

6

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

* Demonstrates specification of width in format string.
***/

#include <stdio.h>

int
main(int argc, char *argv[])
{

int i;

// display mapping for uppercase letters
for (i = 65; i < 65 + 26; i++)

printf("%c %d %3d %c\n", (char) i, i, i + 32, (char) (i + 32));
}

Notice the third column format string is %3d. This means print the decimal
value in three spaces even if the number is only double-digit or single-digit.
Also, we’ve combined two loops into one by realizing that the lowercase
characters are all offset by exactly 32 from the uppercase characters in our
ASCII mapping.

• Typically, a terminal window will be 80 characters wide by 24 characters
tall. This will have significance as you try to build your Mario pyramid.

• ascii3.c shows that we can iterate over characters rather than numbers:

/**
* ascii3.c
*
* Computer Science 50
* David J. Malan
*
* Displays the mapping between alphabetical ASCII characters and
* their decimal equivalents.
*
* Demonstrates iteration with a char.
***/

#include <stdio.h>

int
main(int argc, char *argv[])
{

char c;

7

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

// display mapping for uppercase letters
for (c = ’A’; c <= ’Z’; c = (char) ((int) c + 1))

printf("%c: %d\n", c, (int) c);
}

What’s the deal with the update condition? Recall that i++ is equivalent
to i = i + 1. So for this update condition, we’re casting c to an int in
order to increment it. Then we’re casting the result back to a char so we
can reassign it to c. This is simply for clarity’s sake.3 It’s not actually
necessary, as we’ll see in a moment!

• Let’s make things a little more interesting by implementing the Battleship
gameboard:

1 2 3 4 5 6 7 8 9 10
A o o o o o o o o o o
B o o o o o o o o o o
C o o o o o o o o o o
D o o o o o o o o o o
E o o o o o o o o o o
F o o o o o o o o o o
G o o o o o o o o o o
H o o o o o o o o o o
I o o o o o o o o o o
J o o o o o o o o o o

We’ll compile it using the make command and then run it by writing
./battleship. This is a security precaution, in fact. If you SSH to a
server you don’t know much about and you want to run a program called
foo, what if you type foo at the command line and it executes a different,
malicious version of that program stored elsewhere rather than the one in
your directory that you were hoping to execute?

• What we’re doing is just the tip of the iceberg of what’s known as ASCII
art among geeks. Just Google it. Don’t say you weren’t warned.4

• Before we walk through the code, let’s think how we might approach to
writing the program. Notice that over the last few weeks, we’ve only been
able to print to the screen from left to right and top to bottom. So to
begin, we’ll probably have to print out that first row of numbers, which
shouldn’t be too hard. The middle of the gameboard isn’t too hard, either,
since we just need to print 10 lowercase o’s in a row. But what about that
first column of letters? Let’s take a look at the code:

3Oh yeah, real clear, huh.
4Enjoy.

8

http://www.asciimation.co.nz/

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

/**
* battleship.c
*
* Computer Science 50
* David J. Malan
*
* Prints a Battleship board.
*
* Demonstrates nested loop.
***/

#include <stdio.h>

int
main(int argc, char *argv[])
{

int i, j;

// print top row of numbers
printf("\n ");
for (i = 1; i <= 10; i++)

printf("%d ", i);
printf("\n");

// print rows of holes, with letters in leftmost column
for (i = 0; i < 10; i++)
{

printf("%c ", ’A’ + i);
for (j = 1; j <= 10; j++)

printf("o ");
printf("\n");

}
printf("\n");

}

Take a look at the second for loop. Notice we could’ve started at 1 and
iterated through 10, but we chose to start from 0. This is handy in the
first line when we use i as an offset. ’A’ + 0 gives us A. If we forget about
printing the lowercase o’s, then we can take one task at a time. This isn’t
so bad! Now, on to functions.

4 Functions (46:00–41:00)

• Remember that Simpsons episode where Otto listens to the 99 Beers on
the Wall song on his Walkman? Well this next programming task is almost

9

http://www.courses.fas.harvard.edu/%7Ecs50/play/podcasts/2009/fall/lectures/hdv/week2w.flv

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

as annoying as Everybody Loves Raymond!5

• The fact that this song has a definite pattern gives us an opportunity to
implement it by means of code which can be executed multiple times. You
might be thinking loop at this point, but we’re going to go one step further
now and introduce functions to help get the job done. Let’s take a look
at beer1.c:

/**
* beer1.c
*
* Computer Science 50
* David J. Malan
*
* Sings "99 Bottles of Beer on the Wall."
*
* Demonstrates a for loop (and an opportunity for hierarchical
* decomposition).
***/

#include <cs50.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{

int i, n;

// ask user for number
printf("How many bottles will there be? ");
n = GetInt();

// exit upon invalid input
if (n < 1)
{

printf("Sorry, that makes no sense.\n");
return 1;

}

// sing the annoying song
printf("\n");
for (i = n; i > 0; i--)
{

printf("%d bottle(s) of beer on the wall,\n", i);

5Yes, those thoughts were related. Think about it.

10

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

printf("%d bottle(s) of beer,\n", i);
printf("Take one down, pass it around,\n");
printf("%d bottle(s) of beer on the wall.\n\n", i - 1);

}

// exit when song is over
printf("Wow, that’s annoying.\n");
return 0;

}

As we have been frequently now, we’re including the CS 50 library as
well as stdio.h. Now we’re going to ask the user for an integer input.
After that, for the first time, we’re going to do some error-checking. If
the user gives us 0 or a negative number as input, we’re going to exit out.
Probably not the best solution—it might be better to reprompt—but at
least we’re handling the error case. If we didn’t, it might wreak havoc in
our program. Best practice is to assume that your users are both idiotic
and malicious. It’s a beautiful world, isn’t it?

• Notice that in the case of a bad input, we execute the statement return 1.
We’ve mentioned the ability of programs to return values and, in fact,
main is no different. What’s the use of this? Well, if you’ve ever gotten
an error in a program you were running,6 you’ve likely seen an error code
to accompany it. This is similar in spirit to the exit code of our main
program. By default, if everything executes successfully in main, your
program returns the value 0.

• Now we’re just looping through the verses of the song, counting down from
the positive number that the user provided. We can do this equivalently
using a while loop rather than a for loop as we do in beer2.c:

/**
* beer2.c
*
* Computer Science 50
* David J. Malan
*
* Sings "99 Bottles of Beer on the Wall."
*
* Demonstrates a while loop (and an opportunity for hierarchical
* decomposition).
***/

#include <cs50.h>
6Actually, scratch that, if you haven’t ever gotten an error, please come find me. I just

want to meet the man that God likes more than me.

11

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

#include <stdio.h>

int
main(int argc, char *argv[])
{

int n;

// ask user for number
printf("How many bottles will there be? ");
n = GetInt();

// exit upon invalid input
if (n < 1)
{

printf("Sorry, that makes no sense.\n");
return 1;

}

// sing the annoying song
printf("\n");
while (n > 0)
{

printf("%d bottle(s) of beer on the wall,\n", n);
printf("%d bottle(s) of beer,\n", n);
printf("Take one down, pass it around,\n");
printf("%d bottle(s) of beer on the wall.\n\n", n - 1);
n--;

}

// exit when song is over
printf("Wow, that’s annoying.\n");
return 0;

}

Notice that we’re destructively modifying the user’s input. At the end of
the program, we have no record of what his original input was. That’s fine
for our purposes here, but it’s something to keep in mind if you wanted
your program to thank the user for his specific input at the end of the
program.

• A note on style: n is fine as a kind of sum variable, i, j, k are generally
iterators.

• Let’s fix that pesky grammar problem in beer3.c:

/**

12

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

* beer3.c
*
* Computer Science 50
* David J. Malan
*
* Sings "99 Bottles of Beer on the Wall."
*
* Demonstrates a condition within a for loop.
***/

#include <cs50.h>
#include <stdio.h>

int
main(int argc, char *argv[])
{

int i, n;
string s1, s2;

// ask user for number
printf("How many bottles will there be? ");
n = GetInt();

// exit upon invalid input
if (n < 1)
{

printf("Sorry, that makes no sense.\n");
return 1;

}

// sing the annoying song
printf("\n");
for (i = n; i > 0; i--)
{

// use proper grammar
s1 = (i == 1) ? "bottle" : "bottles";
s2 = (i == 2) ? "bottle" : "bottles";

// sing verses
printf("%d %s of beer on the wall,\n", i, s1);
printf("%d %s of beer,\n", i, s1);
printf("Take one down, pass it around,\n");
printf("%d %s of beer on the wall.\n\n", i - 1, s2);

}

13

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

// exit when song is over
printf("Wow, that’s annoying.\n");
return 0;

}

What’s with the ? : syntax? It’s actually a ternary operator. The first
part (i == 1) is a condition which, if true, causes the string after the ?,
“bottle,” to be assigned to s1. If the condition is false, then “bottles” is
assigned instead. Try running beer3 with 3 as the input and you’ll see
that we’ve corrected the grammar glitch. It’s called a ternary operator
because it takes three operands, as opposed to a binary operator, which
takes two, or a unary operator, which takes just one.

• One downside about this approach, however, of using s1 and s2 is that
we’re wasting CPU cycles every time we execute the loop in order to assign
values to them. This isn’t noticeable for our tiny little program, but it’s
something to think about when you’re writing code for say, a cell phone
application where CPU cycles aren’t so numerous!

• Okay, finally, let’s get around to talking about functions. In beer4.c,
we’ll use a function to implement the chorusline:

/**
* beer4.c
*
* Computer Science 50
* David J. Malan
*
* Sings "99 Bottles of Beer on the Wall."
*
* Demonstrates hierarchical decomposition and parameter passing.
***/

#include <cs50.h>
#include <stdio.h>

// function prototype
void chorus(int);

int
main(int argc, char *argv[])
{

int n;

// ask user for number

14

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

printf("How many bottles will there be? ");
n = GetInt();

// exit upon invalid input
if (n < 1)
{

printf("Sorry, that makes no sense.\n");
return 1;

}

// sing the annoying song
printf("\n");
while (n)

chorus(n--);

// exit when song is over
printf("Wow, that’s annoying.\n");
return 0;

}

/*
* void
* chorus(int bottles)
*
* Sings about specified number of bottles.
*/

void
chorus(int b)
{

string s1, s2;

// use proper grammar
s1 = (b == 1) ? "bottle" : "bottles";
s2 = (b == 2) ? "bottle" : "bottles";

// sing verses
printf("%d %s of beer on the wall,\n", b, s1);
printf("%d %s of beer,\n", b, s1);
printf("Take one down, pass it around,\n");
printf("%d %s of beer on the wall.\n\n", b - 1, s2);

}

Notice that while(n) is the same as while(n > 0) because as soon as n
reaches 0, it will be false and the loop will terminate.

15

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Monday: September 14, 2009
Andrew Sellergren

• Just as someone (if you ever meet him, thank him) wrote printf for your
benefit, you can write functions like chorus that make your job easier and
your code more readable. chorus is effectively a black box that takes care
of the chorus line after being passed the current number of beer bottles.
Why are we passing n-- instead of just n? This takes care of passing
the argument and decrementing the iterator in one line of code. Because
of order of precedence, n is passed to the chorus function and n is only
decremented after the chorus function is finished reading in the value of
n.

• The syntax for declaring a custom function is the same as for declaring
the main method. You need to tell the compiler what variable type the
function returns (in this case, void, or nothing), the name of the function
(chorus in this case), and the arguments that it takes (here, int b). We
need to name the argument so that it can be used within the function.
The n we pass to chorus becomes the variable b within the function itself.
The lines of code in chorus, actually, are nearly identical to how they
appeared in beer3.c. But, arguably, this is better both design-wise and
stylistically. Notice, however, that if we run beer4, we get the exact same
output as beer3.

16

	Announcements (0:00--10:00)
	More About the Course (10:00--23:00)
	Debugging and Casting (23:00--46:00)
	Functions (46:00--41:00)

