
Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–11:00) 2

2 Some More Bugs (11:00–50:00) 2

3 New Section! (50:00–50:00) 11

4 Arrays (50:00–60:00) 11

5 Strings as Arrays (60:00–70:00) 13

1

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

1 Announcements (0:00–11:00)

• This is CS 50.

• If you did the Hacker Edition of Problem Set 1, be sure to return your
sensor board after class and write your name on the slip of paper.

• 0 new handouts.

• Lunch with David! If you’re interested in joinining David and a handful of
others in an opportunity to make a large class much more intimate, then
go here to RSVP. Lunch with David will be held Fridays at 1:15 PM. If
you’ve already RSVP’ed, we’ll be in contact with you shortly regarding
details. There’s also an upcoming Dinner with David at Mather as part
of their Senior Common Room. Go here to RSVP for this one-time event!

• Feel free to call David by his first name. Or Mocking CS 50 Czar.1

• Section assignments have been sent out. If you didn’t receive yours or you
have a conflict with the time you were assigned, please get in touch with
us via e-mail.

• Check the website for the Office Hours schedule. Before you come to Office
Hours with a question like “Where do I begin?” on the problem set, be
sure to watch Marta’s walkthrough. We do move quickly in this course,
but once you start really plugging away at it (learning by doing), we think
you’ll be surprised at how capable you are.

• The CS 50 Map has been improved! Thanks to the MarkerClusterer,
the map’s load time has been significantly decreased (adding 350 cartoon
markers to the map takes a lot of JavaScript). In addition, we addressed
some problems which were causing to deny our geocoding requests. Fi-
nally, we made sure that if multiple people were from the same location,
all of their names would appear.

2 Some More Bugs (11:00–50:00)

• Some of you may have already encountered the problem of rounding
floating-point values. Let’s take a look at imprecision.c to demonstrate
this problem:

#include <math.h>
#include <stdio.h>

int
main()

1Actually, he really likes it if you call him Malan. No, really, don’t. You wouldn’t like him
when he’s angry.

2

http://cs50.net/rsvp
http://cs50.net/dinner
http://www.flybyblog.com/2009/09/11/mocking-cs50-czar-burns-crimson/
http://www.cs50.net/ohs/
http://www.cs50.net/psets/
http://cs50.net/map/
http://googlegeodevelopers.blogspot.com/2009/04/markerclusterer-solution-to-too-many.html

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

{
float f = 0.01;
printf("%.10f\n", f);

int i = round(f * 100);
printf("%d\n", i);

}

If we run this program, we see that even though we’ve perfectly specified
our floating-point value as 0.01, that value is being stored as something
imprecise like 0.0099999998. So if we take this value and multiply by 100
(to move the decimal place two to the left), we’re going to get 0.99999998.
Then if we assign that to an int, it will become 0. What’s the solution?
Use the function round declared in the math.h library. Don’t forget to
link it at compile time! The man page will tell you that you use the flag
-lm to do so.

• To read more about the math.h library, check out the CPP Reference.
We’ve taken the CPP manual and stripped out all the references to C++
to avoid any confusion.

• Let’s take a look at another subtle bug in buggy3.c:

/**
* buggy3.c
*
* Computer Science 50
* David J. Malan
*
* Should swap two variables’ values, but doesn’t!
* Can you find the bug?
***/

#include <stdio.h>

// function prototype
void swap(int, int);

int
main(int argc, char *argv[])
{

int x = 1;
int y = 2;

printf("x is %d\n", x);

3

http://www.cs50.net/resources/cppreference.com/

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

printf("y is %d\n", y);
printf("Swapping...\n");
swap(x, y);
printf("Swapped!\n");
printf("x is %d\n", x);
printf("y is %d\n", y);

}

/*
* void
* swap(int a, int b)
*
* Swap arguments’ values.
*/

void
swap(int a, int b)
{

int tmp;

tmp = a;
a = b;
b = tmp;

}

Before we go through this program line by line, step back a moment and
think about what the program is supposed to do. Basically, it’s just
demonstrating the use of a function called swap, which swaps the values
of two variables.

• Let’s compile the program and see if it works. We can use the make
command so that the -lcs50 and -lm flags are automatically included.
But when we run the program, we get the following output:

x is 1
y is 2
Swapping...
Swapped!
x is 1
y is 2

What’s going on here? If we take a closer look at swap, we can see that
it’s logically sound. We’re using non-descriptive variable names like a, b,
and tmp, but that’s okay because the function is really rather short and
simple. Note, of course, we need a third variable because if we just assign

4

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

the value of b to a, then we lose track of the value of a. So we just need
a place to store it while we make the swap.

• So what exactly is wrong? As someone pointed out, the function is not
returning any value because its return type is void. But that’s not really
the problem. And neither is the fact that we’ve named the variables
x and y in our main method and a and b in our swap function. The
variable names a and b are really just placeholders for whatever arguments
we’ve passed in. Consider that whoever wrote printf isn’t aware of what
variable names you used in your own script, but has his own name for
variables that are used within the printf function itself. So a and b just
stand in for x and y.

• What’s really happening when we call swap? Are we passing in x and y
themselves? No, in fact, we’re passing in copies of those variables. So
while swap successfully swaps the values of a and b, it doesn’t actually
have any effect on the values of x and y.

• In computer science speak, we say that functions like swap have their own
scope. Because x and y exist in a different context, the function can’t
alter them directly—at least the way we’ve written it here. We’ll discuss
a solution to this shortly.

• We can demonstrate this idea of scope with buggy4.c:

/**
* buggy4.c
*
* Computer Science 50
* David J. Malan
*
* Should increment a variable, but doesn’t!
* Can you find the bug?
***/

#include <stdio.h>

// function prototype
void increment();

int
main(int argc, char *argv[])
{

int x = 1;
printf("x is now %d\n", x);

5

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

printf("Incrementing...\n");
increment();
printf("Incremented!\n");
printf("x is now %d\n", x);

}

/*
* void
* increment()
*
* Tries to increment x.
*/

void
increment()
{

x++;
}

If we try to compile this, we get the following errors:

buggy4.c: In function ’increment’:
buggy4.c:40: error: ’x’ undeclared (first use in this function)
buggy4.c:40: error: (Each undeclared identifier is reported only once
buggy4.c:40: error: for each function it appears in.)

Although we declare x as an int in our main method, we can’t reference
it in increment because it has a different scope. increment doesn’t know
anything about where x is stored in memory because it has its own separate
chunk of memory to work with.

• How can we at least get this program to compile? Well we can declare
int x in increment. Be careful, though, we need to initialize it with
a value. If we don’t, then we’ll be incrementing whatever junk is al-
ready stored in memory at that location from a previous use. So write
int x = 0. Now when we compile and run it, we get the following output:

x is now 1
Incrementing...
Incremented!
x is now 1

Obviously, that didn’t really solve the problem. What if we take the
approach of declaring x outside the scope of both main and increment?
Let’s put the int x = 0 line right below our declaration of the increment

6

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

function and recompile. Now it works! But I’m not even going to bother
to show you those lines of code because it’s bad practice! In general, we
want to avoid the use of these so-called global variables. When your code
is spread across multiple files and hundreds of lines, you’re liable to forget
the names of global variables and you’ll end up clobbering them without
knowing it. And, trust us, there are other reasons why you should avoid
global variables, but we won’t go into them for now.

• What about that declaration of the increment function?

void increment();

If we get rid of this line of code, we get the following errors at compile
time:

buggy4.c: In function ’main’:
buggy4.c:19: warning: implicit declaration of function ’increment’
buggy4.c: At top level:
buggy4.c:34: warning: conflicting types for ’increment’
buggy4.c:19: warning: previous implicit declaration of ’increment’ was here

The compiler is mad because we’re calling increment before it’s been
defined. We can actually fix this simply by placing the definition of
increment above the definition of main. This is a little sloppy style-
wise, though, since someone who’s reading your code probably wants to
see the main method first. The better solution is to declare the function
by stating its return type, its name, and its argument types at the top of
the file. This is, unfortunately, one of the downsides of C that has been
done away with in most modern programming languages.

• To shed more light on this problem of scope, take a look at buggy5.c:

/**
* buggy5.c
*
* Computer Science 50
* David J. Malan
*
* Should increment a variable, but doesn’t!
* Can you find the bug?
***/

#include <stdio.h>

// global variable
int x;

7

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

// function prototype
void increment();

int
main(int argc, char *argv[])
{

printf("x is now %d\n", x);
printf("Initializing...\n");
x = 1;
printf("Initialized!\n");
printf("x is now %d\n", x);
printf("Incrementing...\n");
increment();
printf("Incremented!\n");
printf("x is now %d\n", x);

}

/*
* void
* increment()
*
* Increments x.
*/

void
increment()
{

int x = 10;
x++;

}

When we run this program, it prints the value 1 for x both times. Why is
that? When increment is called, we declare a variable int x. When we
execute the statement x++, then, we’re incrementing this newly declared
variable rather than the one which is global in scope. This reuse of a
variable name in different scopes is called shadowing and is perfectly fine as
long as you keep track of which version of the variable is being manipulated
at any given time.

• What’s actually going on in memory when we deal with these variables?
The FAS servers have a large chunk of memory called their RAM. When
your program runs, it takes memory from the very “bottom” of the mem-
ory bank and sets it aside to store main’s parameters. We can visualize

8

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

this below:

Next in memory are stored the variables which are declared within the
scope of main. Then, if there are any other functions we call such as
foo, we tack on the parameters that are passed to foo as well as foo’s
local variables—the variables declared within its scope. This is a very
brief look at what is known in computer science as the stack, which is
simply a way of conceptualizing a computer’s RAM. As you can see from
this visualization, each function has its own frame, or chunk of memory,
and doesn’t have access to any other function’s frame. Global variables
are actually stored at the “top” of memory, called heap, along with what’s
called the text segment of your program—its representation in binary after
being compiled.

• As one astute student suggested, we could fix our problem of scope by
implementing a function that has an actual return value. Take a look at
return1.c to see this in action:

/**
* return1.c
*
* Computer Science 50
* David J. Malan
*
* Increments a variable.
*
* Demonstrates use of parameter and return value.
***/

#include <stdio.h>

9

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

// function prototype
int increment(int);

int
main(int argc, char *argv[])
{

int x = 1;
printf("x is now %d\n", x);
printf("Incrementing...\n");
x = increment(x);
printf("Incremented!\n");
printf("x is now %d\n", x);

}

/*
* int
* increment(int a)
*
* Returns argument plus one.
*/

int
increment(int a)
{

return a + 1;
}

• Slightly more interesting is return2.c which implements a function that
cubes its input:

/**
* return2.c
*
* Computer Science 50
* David J. Malan
*
* Cubes a variable.
*
* Demonstrates use of parameter and return value.
***/

#include <stdio.h>

10

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

// function prototype
int cube(int);

int
main(int argc, char *argv[])
{

int x = 1;
printf("x is now %d\n", x);
printf("Cubing...\n");
x = cube(x);
printf("Cubed!\n");
printf("x is now %d\n", x);

}

/*
* int
* cube(int a)
*
* Cubes argument.
*/

int
cube(int a)
{

return a * a * a;
}

Hopefully you’re getting used to this kind of programmatic flow whereby
we factor out and abstract away certain operations into separate functions.
As before, we give the input of cube a very uninteresting name since it’s
short-lived. We do the math that’s necessary and then return the value
which will overwrite the value of x.

3 New Section! (50:00–50:00)

• I’m really bad at dividing these notes into sections. So here’s one just to
help break it up a little bit.

4 Arrays (50:00–60:00)

• Let’s say we want to write a program to store our grades from all our
semesters at Harvard. We’ve familiarized ourselves with the concept of

11

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

a loop, so it should seem obvious that we’d want to implement one here.
But how will be dynamically create variables to store the grades we take
as input from the user? We’ll use arrays!

• Recall from Scratch the variable type lists. This is simply the Scratch
implementation of arrays. In other contexts, arrays are called vectors.

• Check out this fantastic tutorial on arrays in C.

• So let’s say we want to declare an array to store 32 courses. The syntax
for this is as follows:

int courses[32];

This simply asks the compiler for 32 int’s contiguous in memory. Now, to
assign values to this variable, we write courses[0], courses[1], courses[2],
etc.

• Take a look at array1.c below:

/**
* array1.c
*
* Computer Science 50
* David J. Malan
*
* Computes a student’s average across 2 quizzes.
*
* Demonstrates use of an array, a constant, and rounding.
***/

#include <cs50.h>
#include <stdio.h>

// number of quizzes per term
#define QUIZZES 2

int
main(int argc, char *argv[])
{

float grades[QUIZZES], sum;
int average, i;

// ask user for grades
printf("\nWhat were your quiz scores?\n\n");

12

http://computer.howstuffworks.com/c10.htm

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

for (i = 0; i < QUIZZES; i++)
{

printf("Quiz #%d of %d: ", i+1, QUIZZES);
grades[i] = GetFloat();

}

// compute average
sum = 0;
for (i = 0; i < QUIZZES; i++)

sum += grades[i];
average = (int) (sum / QUIZZES + 0.5);

// report average
printf("\nYour average is: %d\n\n", average);

}

As you might have figured out from reading the code yourself, this program
takes as input a certain number of quiz grades, stores them in an array,
and then computes their average. Notice that instead of a hard-coded
numeric value, we use QUIZZES to specify the number of inputs to store.
This is to avoid the problem of magic numbers. Magic numbers are those
that appear in a program without any particular justification. Not to
mention, they make the program particularly inflexible. What if later on
we wish to change the number of quizzes that this program averages? It
would be a pain to go through all the lines of code and replace a hard-
coded numeric value. In the above, however, we need only change how
the constant QUIZZES is defined at the top with the #define pre-processor
directive. Another advantage of this is optimizations which the compiler
can perform. By convention, constants are written in all capital letters to
distinguish them from variables.

• Notice that we can consecutively declare multiple variables of the same
type by separating them with variables. Realize that arrays are always
zero-indexed.

• What’s with the addition of the 0.5? Think it through. It’s a quick trick
to implement rounding without using the round function. array2.c is
equivalent functionally to array1.c except it explicitly invokes the round
function.

5 Strings as Arrays (60:00–70:00)

• We said before that in C a string is actually implemented as a char *.
We’ll get more into that later in the course, but for now let’s consider
another way of conceptualizing a string: as an array. As it turns out, a
string can be accessed as an array of char’s.

13

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

• Take a look at a string1.c:

/**
* string1.c
*
* Computer Science 50
* David J. Malan
*
* Prints a given string one character per line.
*
* Demonstrates strings as arrays of chars and use of strlen.
***/

#include <cs50.h>
#include <stdio.h>
#include <string.h>

int
main(int argc, char *argv[])
{

char c;
int i;
string s;

// get line of text
s = GetString();

// print string, one character per line
if (s != NULL)
{

for (i = 0; i < strlen(s); i++)
{

c = s[i];
printf("%c\n", c);

}
}

}

Here we’re taking a string as user input and then printing it out one letter
at a time. The s != NULL is actually an error-checking mechanism. If
GetString() returns this sentinel value of NULL, we won’t execute this
loop at all. This is because if an error occurs, we don’t want to even
attempt to access the string as an array. We’ll see why in a moment.

• Hopefully it’s obvious, but the strlen() function takes a string as input

14

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

and returns its length. As it turns out, there’s a special value at the end
of all strings: \0, which represents 00000000.

• In string2.c, we make a single optimization in our design:

/**
* string2.c
*
* Computer Science 50
* David J. Malan
*
* Prints a given string one character per line.
*
* Demonstrates strings as arrays of chars with slight optimization.
***/

#include <cs50.h>
#include <stdio.h>
#include <string.h>

int
main(int argc, char *argv[])
{

int i, n;
string s;

// get line of text
s = GetString();

// print string, one character per line
if (s != NULL)
{

for (i = 0, n = strlen(s); i < n; i++)
{

printf("%c\n", s[i]);
}

}
}

In our for loop, we have two initializations. Why did we assign the return
value of strlen(s) to another variable? This approach prevents a function
call every single time the loop executes. Think about it: is the string’s
length changing each time the loop executes? No. Does it make sense,
then, to calculate its length every time, most likely by iterating over every
character in the string? No. It’s obviously a waste of resources to call
strlen() more than once.

15

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

• capitalize.c is a program which brings together a lot of the concepts
we’ve touched upon so far:

/**
* capitalize.c
*
* Computer Science 50
* David J. Malan
*
* Capitalizes a given string.
*
* Demonstrates casting and iteration over strings as arrays of chars.
***/

#include <cs50.h>
#include <stdio.h>
#include <string.h>

int
main(int argc, char *argv[])
{

int i, n;
string s;

// get line of text
s = GetString();

// capitalize text
for (i = 0, n = strlen(s); i < n; i++)
{

if (s[i] >= ’a’ && s[i] <= ’z’)
printf("%c", s[i] - (’a’ - ’A’));

else
printf("%c", s[i]);

}
printf("\n");

}

Recall that in ASCII, lowercase a is 97 and uppercase A is 65. So to capi-
talize a letter, we simply subtract the difference between those numbers.
We could, as before, store the value of ’a’ - ’A’, but the compiler will
probably actually do that for us since it can recognize simple arithmetic
like this. In any case, writing it this way is much more clear than inputting
the magic number of 32.

16

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

• If you’re feeling like this is moving too fast or you just want some extra
resources, check out the How Stuff Works tutorial and the CPP Reference.

• Let’s examine that copy-paste job that we’ve been putting at the top of
every program we’ve written so far:

int main (int argc, char *argv[])

As it turns out, main is its own function just like any custom one we might
write. int argc and char *argv[] are, in fact, two arguments that we
specify in its function definition. How do we provide these arguments?
From the command line!

• But you’ve been doing this all along. Recall that whenever you’ve executed
the gcc command, you’ve provided it with the name of the file you want
to compile as a command-line argument.

• Take a look at argv1.c:

/**
* argv1.c
*
* Computer Science 50
* David J. Malan
*
* Prints command-line arguments, one per line.
*
* Demonstrates use of argv.
***/

#include <stdio.h>

int
main(int argc, char *argv[])
{

int i;

// print arguments
printf("\n");
for (i = 0; i < argc; i++)

printf("%s\n", argv[i]);
printf("\n");

}

What does this program do? It actually prints out the command-line
arguments that we provide it. argv[] is not just an array, but an array

17

http://www.howstuffworks.com/c.html
http://www.cs50.net/resources/cppreference.com/

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

of strings, or an array of arrays. More than that, it is an array of the
command-line arguments that have been provided to the program. argc
is the count of those arguments.

• argv2.c takes it one step further:

/**
* argv2.c
*
* Computer Science 50
* David J. Malan
*
* Prints command-line arguments, one character per line.
*
* Demonstrates argv as a two-dimensional array.
***/

#include <stdio.h>
#include <string.h>

int
main(int argc, char *argv[])
{

int i, j, n;

// print arguments
printf("\n");
for (i = 0; i < argc; i++)
{

for (j = 0, n = strlen(argv[i]); j < n; j++)
printf("%c\n", argv[i][j]);

printf("\n");
}

}

Now we’re iterating over not only all of the command-line arguments, but
over each of the arguments themselves and printing them out one character
at a time. We access each of these characters using the following syntax:

argv[i][j]

This gives the jth character of the ith argument. argv[], more properly
speaking, is a two-dimensional array.

• Soon we’ll be peeking under the hood at CS 50’s library, which provides
a plethora of functions for your disposal. One thing worth mentioning is

18

Computer Science 50
Fall 2009
Scribe Notes

Week 2 Wednesday: September 16, 2009
Andrew Sellergren

that this library has intentional memory leaks built into it. That is, it
allocates memory to you that it never asks you to return. We’ll explain
more later.

• Where are we going with all this? For starters, the world of cryptography
in Problem Set 2! You’ll implement Caesar’s cipher by leveraging the fact
that strings are arrays of characters.

• To conclude, ponder the fact that The Simpsons is the greatest television
show of all time.

19

	Announcements (0:00--11:00)
	Some More Bugs (11:00--50:00)
	New Section! (50:00--50:00)
	Arrays (50:00--60:00)
	Strings as Arrays (60:00--70:00)

