
Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

Contents

1 Geek Humor (0:00–5:00) 2

2 Announcements (5:00–9:00) 2

3 Debugging (9:00–25:00) 2

4 Pointers (25:00–45:00) 8
4.1 Passing by Value . 8
4.2 Memory Addresses and Hexadecimal 10
4.3 Passing by Reference . 11

1

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

1 Geek Humor (0:00–5:00)

• Check out this Wall Street Journal article on the lamentations of Dvorak
keyboard users in a world where QWERTY layouts are dominant.

• Dvorak is just one among many nerdy keyboard layouts. Others include
ergonomically optimized keyboards or keyboards that have absolutely no
labels at all on the keys!

2 Announcements (5:00–9:00)

• This is CS 50.

• 1 new handout.

• If you haven’t already, please turn in your sensor boards from Problem
Set 0.

• About grades: TFs have been trained to focus on qualitative feedback
rather than quantitative feedback. Please hear us when we say that 3 out
of 5 is not a 60%! The goal of this term is for those who start off with
3’s to improve toward 5’s and for those who start off with 1’s and 2’s to
improve toward 3’s and 4’s. Improvement is the key!

• On correctness, design, and style: correctness is simply a measure of
whether or not your code does what it’s supposed to, according to the
specification. Design is more subjective: how well did you solve the prob-
lem? Your program might be 100% functional, but it could be comprised
of nothing but spaghetti code. Style should be the easy part. Just make
sure you have meaningful variable names, concise comments, good inden-
tation, etc.1

3 Debugging (9:00–25:00)

• There are more powerful tools available to you than printf. Among them
is GDB, or GNU Debugger. Take a look at bar.c below:

/**
* bar.c
*
* Computer Science 50
* David J. Malan
*
* Offers opportunities to play with pointers with GDB.

1Realize that for Problem Set 1, we graded design and style out of 2 points because we had
very little time to discuss our expectations for them. From here on out, they will be graded
out of 5 points.

2

http://online.wsj.com/article/SB125409298496044871.html

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

***/

#include <stdio.h>

int foo(int n);
void bar(int m);

int
main(int argc, char *argv[])
{

int a;
char * s = "hello, world";
printf("%s\n", &s[7]);
a = 5;
foo(a);
return 0;

}

int
foo(int n)
{

int b;
b = n;
b *= 2;
bar(b);
return b;

}

void
bar(int m)
{

printf("Hi, I’m bar!\n");
}

This program is nothing special—it calls two functions named foo and
bar—but it affords us an opportunity to walk through a program using
GDB. What we’ll do is compile it with a special flag that allows us to run
it within the confines of GDB, like so:

gcc -ggdb -o bar bar.c

This tells GCC not only to compile our program, but to include extra
information like debugging symbols. Frankly, without a debugger, this
information is useless to a human and simply takes up space. But empow-
ered with GDB, we can use it to examine the program line by line.

3

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

• First, we’ll run gdb bar. We’ll then be presented with a prompt like this:

(gdb)

From this prompt, the simplest command we can execute is run. When
we execute this, GDB will spit out:

Starting program: /nfs/home/m/a/malan/cs50/4/bar
world
Hi, I’m bar!

Program exited normally.

Nothing very interesting. It tells us the exact path from which we’re
executing this program and then displays the program’s normal output,
telling us whether the program exited normally or not. If you wrote in
non-zero return values for main and your program exited with one of these
error codes, GDB will tell you so.

• Another quick trick: CTRL + L will clear the screen in Linux.

• Now let’s type break main and hit Enter at the GDB prompt. GDB will
then tell us that it has set a breakpoint at line 21 of our program. As the
name implies, this will be a point at which GDB will pause execution of
your program, allowing you to poke around for a bit. Now when you type
run, you’ll get:

Breakpoint 1, main () at bar.c:20
20 char * s = "hello, world";

We can see that we’ve stopped at the very beginning of our main method.
Now if we type list we’ll see the lines surrounding the current line:

(gdb) list
15
16 int
17 main(int argc, char *argv[])
18 {
19 int a;
20 char * s = "hello, world";
21 printf("%s\n", &s[7]);
22 a = 5;
23 foo(a);
24 return 0;

So why is GDB breaking on line 21 instead of 19 or 20? Line 21 seems to be
the first real statement of the program, following two variable declarations.

4

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

• Let’s examine the current value of a, which has been declared but not
initialized:

(gdb) print a
$1 = 134514073

This is a good opportunity to reiterate our warning from last week that
while it’s fine to declare variables without initializing them, you should
never use them before you yourself have assigned them a value. Clearly,
the variable has some garbage inside of it because its RAM was not cleaned
up after being used last.

• A sidenote: the $1 is a temporary variable named assigned by GDB which
allows you to reprint values later on, but for now let’s just overlook it.

• Likewise, if we check the value of s, we get junk:

(gdb) print s
$2 = 0xb7f6edc0 "U\211?WVS??y"

0x is the beginning of a memory address, a location in RAM. Why is there
junk inside of s at line 21? Well, the statement hasn’t actually executed
yet, so we need to type next:

(gdb) next
21 printf("%s\n", &s[7]);
(gdb) print s
$3 = 0x8048630 "hello, world"

Now, as you can see, the value we want has been stored in s. Recall that
char * is just a string.

• If we type next, again, we’ll be stepping over a printf statement. Let’s
see what gets printed:

(gdb) next
world
22 a = 5;

world was what printed. But what we fed in was &s[7]. This syntax is
new, but let’s see if we can take a guess. If we start counting from the left
of that string, the w of world is the 7th character. Somehow we’ve printed
a substring. More on that in a moment.

• Let’s step through a few more lines:

5

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

(gdb) list
17 main(int argc, char *argv[])
18 {
19 int a;
20 char * s = "hello, world";
21 printf("%s\n", &s[7]);
22 a = 5;
23 foo(a);
24 return 0;
25 }
26
(gdb) print a
$4 = 134514073
(gdb) next
23 foo(a);
(gdb) print a
$5 = 5

If we type next at this point, GDB is actually going to step over foo to
line 25. Nothing else interesting is going on with this program, so we can
type continue to finish executing till the end (or, technically, the next
breakpoint but since we’ve already gone past the only one, it will simply
go to the end).

• What if we want to see what happens inside foo? Let’s start over again:

(gdb) break main
Breakpoint 1 at 0x8048505: file bar.c, line 20.
(gdb) delete
Delete all breakpoints? (y or n) y
(gdb) break bar.c:22
Breakpoint 2 at 0x804851a: file bar.c, line 22.

This time, instead of breaking on the very first line, let’s break on line 22.
Now, we’ll advance a few lines by typing next, but when we get to line
24, we’ll type step instead of next. This will tell GDB to dig deeper into
any functions that are being called on that line and to actually go line by
line through them:

(gdb) run
Starting program: /nfs/home/a/s/asellerg/bar
world

Breakpoint 2, main () at bar.c:22
22 a = 5;
(gdb) next

6

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

23 foo(a);
(gdb) step
foo (n=5) at bar.c:31
31 b = n;

Here we see the first statement of the foo function. Let’s do a quick sanity
check. First, we’ll list the lines around our current line and then we’ll
print the value of n and b:

(gdb) list
26
27 int
28 foo(int n)
29 {
30 int b;
31 b = n;
32 b *= 2;
33 bar(b);
34 return b;
35 }
(gdb) next
32 b *= 2;
(gdb) next
33 bar(b);
(gdb) print n
$1 = 5
(gdb) print b
$2 = 10

n takes on the value of a that we passed to the function and b is just twice
that. Note that p is shorthand for the print command. Finally, we can
step into bar and finish out the program:

(gdb) step
bar (m=10) at bar.c:40
40 printf("Hi, I’m bar!\n");
(gdb) next
Hi, I’m bar!
41 }
(gdb) continue
Continuing.

Program exited normally.

We used GDB here simply to step through code line by line, but don’t
underestimate its value as a real debugger. When you have a bug in your
program, this tool is invaluable in tracking it down!

7

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

4 Pointers (25:00–45:00)

4.1 Passing by Value

• Recall from a few weeks ago our problem with buggy3.c:

void
swap(int a, int b)
{

int tmp;

tmp = a;
a = b;
b = tmp;

}

These lines of code actually functioned as they were supposed to, but the
result was not what we’d hoped. This was because the values of a and b
were effectively thrown away at the end of this function’s execution. They
were local to the swap function. What does this look like in memory?
Take a look at this step-by-step representation of the stack:

1. Before we call swap(), the variables x and y are stored in main’s
frame at two different memory addresses (we’ll call them 0x0 and
0x4 for simplicity) with values 1 and 2.2

2. When we call swap(), copies of the variables x and y are passed to it
as arguments. These become variables a and b which are stored on
a new stack frame belonging to swap().

2Note that in lecture, David uses memory addresses 1 and 2 along with values 7 and 8 in
his example. Don’t be confused!

8

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

3. Next, we declare a variable tmp, which will also be stored on the stack
frame of swap(), and assign it the value of a. Finally, the actual swap
takes place and a now has b’s value whereas b has a’s value:

4. Once swap() returns, however, the memory in its stack frame is freed
and the stack returns to the state it was in before swap() was called!3

• Just as a sanity check, we can compile and run buggy3 with GDB. As a
sidenote, realize that when you run the make command, it’s throwing in the
-ggdb flag for you, but usually it’s not a good idea to include debugging
symbols in a publicly released program. These debugging symbols can
actually be used to disassemble your program.

• If we run gdb buggy3 and step into the swap function, we can view the
values of a and b which we’ve only been assuming so far:

swap (a=1, b=2) at buggy3.c:46
46 tmp = a;
(gdb) print a
$1 = 1

3This is not entirely true. The values of of our variables might actually still be stored
there, but they stand to be overwritten at any time if another function is called or our
program otherwise needs to store something on the stack. Thus, the memory is not “ours”
anymore!

9

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

(gdb) print b
$2 = 2
(gdb) print tmp
$3 = 0

Why do we get 0? Well, it’s actually just another garbage value that
happens to seem reasonable in this context. Finally, if we keep stepping
and printing, we can see the swap occurs as it’s supposed to, but that x
and y remain unchanged at the end of the program:

(gdb) next
47 a = b;
(gdb) print tmp
$4 = 1
(gdb) next
48 b = tmp;
(gdb) print a
$5 = 2
(gdb) n
49 }
(gdb) print b
$6 = 1
(gdb) continue
Continuing.
Swapped!
x is 1
y is 2

Program exited normally.

4.2 Memory Addresses and Hexadecimal

• Although we glossed over this earlier, realize that the int’s we were storing
on the stack had real memory locations (which we simulated as 0x0 and
0x4, or 0x12 and 0x16 as David chose in lecture). Each int being 32 bits
or 4 bytes, their memory addresses are then separated by 4.

• The structure of these memory addresses we’re discussing is one of the
reasons that certain computers can only have 2 GB of RAM. If the memory
addresses themselves are 32 bits, then they can only represent numbers
up to 2 billion (positive and negative). So they actually can’t represent
any memory location beyond that. 64-bit CPUs, in contrast, can address
much more memory.

• What’s the deal with the 0x at the beginning of these memory addresses,
though? These numbers are actually in hexadecimal. How do we count in
hexadecimal? Whereas in binary you have 2 possible values for each digit

10

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

and in decimal you have 10 possible values for each digit, in hexadecimal
you have 16 possible values for each digit. Check out the conversion chart
below:4

Colors in HTML are often represented in hexadecimal. Generally, it’s
not going to useful to you to know where your program is located in
RAM, but it might be useful to pay attention to the last few digits to
know where things are relative to each other. In a few weeks, when we
get to the forensics problem set, you’ll see memory locations written in
hexadecimal. One advantage, of course, of this is that memory addresses
are much shorter than they would be if we wrote them in decimal.

4.3 Passing by Reference

• So how do we go about fixing swap? Well, we could try to return the
values after they were swapped so we wouldn’t lose them. But in C you
can only return a single value, so this is a bit hackish. The better solution
is to pass x and y by reference rather than by value. What do we mean
by this?

• Thus far, we’ve been passing variables by value, which is to say that we’ve
been sending along copies of them. To pass by reference, we need to pass

4Source: Wikipedia.

11

http://en.wikipedia.org/wiki/Hexadecimal

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

pointers to the variables. That is, we need to pass along their locations in
memory so that the function is empowered to actually change the contents
of that memory. Passing by reference is demonstrated in swap.c:

/**
* swap.c
*
* Computer Science 50
* David J. Malan
*
* Swaps two variables’ values.
*
* Demonstrates passing by reference.
***/

#include <stdio.h>

// function prototype
void swap(int *, int *);

int
main(int argc, char *argv[])
{

int x = 1;
int y = 2;

printf("x is %d\n", x);
printf("y is %d\n", y);
printf("Swapping...\n");
swap(&x, &y);
printf("Swapped!\n");
printf("x is %d\n", x);
printf("y is %d\n", y);

}

/*
* void
* swap(int *a, int *b)
*
* Swap arguments’ values.
*/

void

12

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

swap(int *a, int *b)
{

int tmp;

tmp = *a;
*a = *b;
*b = tmp;

}

• Let’s walk through the new swap() line by line while looking at the stack:5

1. int tmp;

Here, again we’re declaring tmp as an int local to the function
swap(). However, notice now that the variables a and b are not
storing values but rather memory addresses, specifically those of x
and y! These are pointers to x and y. When called upon, our function
can access and change x and y directly.

2. tmp = *a;

5Note that in lecture, David uses the memory addresses 0x12 and 0x16, but we’re using
0x0 and 0x4 here. The starting points of both sets are arbitrary—only the difference between
them, namely 4 bytes, is significant.

13

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

Notice the asterisk or star in front of a. This is the dereferencing
operator. The whole line reads “assign to tmp whatever is stored in
memory at location a.” Once we’ve done that, tmp stores the value
1, as shown in the diagram.

3. *a = *b;

This line is a little harder to follow, but pay attention to the diagram.
We’re saying “assign to the memory at location a whatever is stored
in memory at location b.” This is the first part of the swap! We’ve
actually modified the memory of main!

4. *b = tmp;

And the swap is complete! Note that we don’t use a star in front
of tmp in this line. That’s because we don’t care about where tmp
is stored, we’re only using it to temporarily hold a value. We don’t
care what happens to it after swap() returns.

5. [return;]

14

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

Finally, swap() returns (albeit not explicitly in the code since its
type is void). Unlike in buggy3.c, however, the values of x and y
have actually been swapped!

Realize that many modern programming languages don’t allow this kind
of control over memory because it can be dangerous. We’ll demonstrate
in lecture how passing around memory addresses can be exploited.

• One other change we’ve made to main in swap.c is to pass &x and &y as
opposed to x and y as we did in buggy3.c. The & operator asks for the
memory location of whatever comes after it—you can think of it as the
opposite of the dereferencing operator. So, as we said, we’re passing the
memory locations of x and y to swap.

• The declaration of swap has also changed. We specify its parameters as
int * as opposed to just int. This means that its parameters are pointers
to int’s, not just verb/int/’s.

• Where have we seen the * operator before? Recall char *, which is syn-
onymous with our string datatype.

• Pointers are often represented in diagrams as an arrow pointing to a box
representing a chunk of memory with some value stored in it. When you
declare a variable, you are getting one of these chunks of memory with a
something unknown stored in it (often represented as a question mark).
Check out the tutorial at How Stuff Works for a good visualization of
pointers (the same that David uses in lecture).

• Let’s say we have a chunk of memory after declaring int i:

i 3

• Now let’s declare a pointer to an int and name it p. If we write p = i,
what will we get? Nothing. We’ll get a memory address of 3 which is likely
not memory that we own. In fact, we’ll get a warning from the compiler
that assignment is between two different variable types. What we really
should write is p = &i. Now if we say that i is at memory address 0x123,
our picture looks like the following:

15

http://computer.howstuffworks.com/c22.htm

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

p 0x123 i 3

• A less confusing way of representing pointers (rather than using arbitrar-
ily picked memory addresses, is to use an actual arrow like so:

p 0x123 → i 3

• Now, if we write *p = 5, then we get the following:

p 0x123 → i 5

• As it turns out, arrays are also pointers. For example, we might write:

int i;
int a[5];
int *p = a;

We can represent this pictorially like so:

p is now a pointer to the first element of a. This is, in fact, all that an array
is. We know that all of the elements of an array are stored contiguously
in memory, so once we know the first, we can calculate all the rest.

• Let’s say we were to write printf(‘‘%d’’, p), what would it print?
Well, it would actually print out the address of p since. If we wrote
printf(‘‘%d’’, *p), instead, we’d get the actual value at the first index
of array a.

• So from now on, we’re dropping the training wheels. When we talk about
strings, we’re going to talk about char *. Now let’s take a look at a
program that purportedly compares two strings but actually fails in doing
so:

16

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

/**
* compare1.c
*
* Computer Science 50
* David J. Malan
*
* Tries (and fails) to compare two strings.
*
* Demonstrates strings as pointers to arrays.
***/

#include <cs50.h>
#include <stdio.h>
#include <string.h>

int
main(int argc, char *argv[])
{

// get line of text
printf("Say something: ");
char *s1 = GetString();

// get another line of text
printf("Say something: ");
char *s2 = GetString();

// try (and fail) to compare strings
if (s1 == s2)

printf("You typed the same thing!\n");
else

printf("You typed different things!\n");
}

FIrst we’re asking the user for two strings and then storing them. But
how exactly is GetString() returning an entire string? Well, it’s not. In
fact, it’s returning a pointer to the first char. How do we know where the
end of the string is? As with an array, the string is a series of characters
which are stored contiguously in memory. And the null terminator (\0)
marks the end of the string. Recall the strlen function. If we think
about how that might be implemented, we would probably guess that it
simply iterates over all the characters of the string until it reaches the null
terminator.

• What happens when we compile and run compare1? If we type foo for
each of the strings, we get the message that we have different strings.

17

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

What’s really going on? Each time we call GetString(), it’s returning a
pointer to the first char of the string—in other words, a memory location.
But if we’re getting two different strings, they must be stored at two
different memory locations. And, in fact, when we ask if s1 == s2, that’s
what we’re really comparing—the memory locations of the two strings,
which will never be equal.

• The working version of this program is compare2.c:

/**
* compare2.c
*
* Computer Science 50
* David J. Malan
*
* Compares two strings.
*
* Demonstrates strings as pointers to arrays.
***/

#include <cs50.h>
#include <stdio.h>
#include <string.h>

int
main(int argc, char *argv[])
{

// get line of text
printf("Say something: ");
char *s1 = GetString();

// get another line of text
printf("Say something: ");
char *s2 = GetString();

// try to compare strings
if (s1 != NULL && s2 != NULL)
{

if (!strcmp(s1, s2))
printf("You typed the same thing!\n");

else
printf("You typed different things!\n");

}
}

In a way, this is a bit of cheating. We’re just calling a pre-made function.

18

Computer Science 50
Fall 2009
Scribe Notes

Week 4 Monday: September 28, 2009
Andrew Sellergren

But if we had to implement strcmp ourselves, how would we go about it?
We’d have to walk through each character one by one in both strings. If
the two characters are ever different, then return false. And if you reach
the null terminator of both strings at the same time, then return true.

• There’s also a sanity check in compare2. Only if GetString() doesn’t
return NULL, the sentinel value, does the string comparison proceed.

• What gets returned by strcmp() if two strings are equal? 0. And it
returns a positive or a negative depending on whether one string is shorter
or longer than the other.

19

	Geek Humor (0:00–5:00)
	Announcements (5:00–9:00)
	Debugging (9:00–25:00)
	Pointers (25:00–45:00)
	Passing by Value
	Memory Addresses and Hexadecimal
	Passing by Reference

