Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

Contents

1 Geek Humor (0:00-10:00) 2

2 Announcements (10:00-12:00) 2

3 More on Memory (12:00-65:00) 2
3.1 Pointer Arithmetic . . . . . ... .. L oo 3
3.2 Copying Strings . . . . . . ... 6

4 CS 50’s Library Revisited (65:00—-78:00) 11



Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

1 Geek Humor (0:00-10:00)

e I wish this were a joke.

e We should temper our teasing by noting that Microsoft has graciously sup-
ported us via an MSDN Academic Alliance, which allows you to download
many different flavors of Windows, including Windows 7.

e If you're going to host a launch party, don’t forget your notes. The sad
part, honestly, is that all of the host parties have already filled up. Seri-
ously, who is going along with this? Better to go to Harvard Hungama
this Saturday in Lowell Dining Hall.

e We also have access to virtual machine software, which allows you to run
one operating system inside of another without the pain of dual booting.

2 Announcements (10:00-12:00)
e This is CS 50.
e 0 new handouts.

e Regarding questions pertaining to your code: now that you've been em-
powered to use GDB, you are encouraged to begin the debugging process
yourself before turning to us via office hours, the bulletin board, or the
e-mail list. That’s not to say, of course, that we won’t help you when
you are still stuck, but simply that you should at least begin to tackle
the problem on your own. Check out this quick reference for some of the
commands.

e The online grades tool is now ready. This is meant to be a sanity check
so that you can be sure the official grades we recorded are those that we
assigned to you on your problem sets.

3 More on Memory (12:00-65:00)

e Recall that we are allocated 32 bits for an int that we declare, 8 bits for
a char, 64 bits for a double, etc. When we declare an array of 4 int’s,
we actually get 4 32-bit chunks of contiguous memory (plus a 5th 32-bit
chunk to store the null terminator). What’s stored in that memory to
begin with? Junk.

e We can start thinking of the name of an array as representing the array’s
address in memory. Because memory in an array is contiguous, we can
calculate each element’s location based on its index and the size of the
data type. This gives us random access to the array’s contents.


http://www.youtube.com/watch?v=1cX4t5-YpHQ
http://www.cs50.net/software/
http://www.houseparty.com/favor/get/813
http://www.youtube.com/watch?v=77jx7utGQ0Q
http://www.cs50.net/resources/gdb_quickref.pdf
http://www.cs50.net/grades/

Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e Now that the training wheels are off, we can begin to talk about a string
as a char *, which, like an array, is really just a pointer to the first
character of the string. The remainder of the string is stored contiguously
in memory, so we have random access to each of its characters just like we
do to each of an array’s elements.

3.1 Pointer Arithmetic
e Let’s take a look at pointersl.c:

/3 ok sksksk sk ook sksk ok ok skskok ok sksk sk sk sk sk sk sk ok oksksk sk ok stk sk sk ok sksk sk sk ok stk sk ok skeskok sk ok sksksk sk ok sksk ok ok sk skok sk ok ok ok
* pointersl.c

*
* Computer Science 50

* David J. Malan

*

* Prints a given string one character per line.

E3

* Demonstrates pointer arithmetic.

stk ok skokok ok ok skokok ok ok sk ko ok skokok o ok skokok ok ok skakokok ok skokok ok skakok sk ok skokok ok sk skoko ok skokok sk ok skokok ok ok skokok ok /

#include <csb0.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char xargv[])
{
// get line of text
char *s = GetString();
if (s == NULL)
return 1;

// print string, one character per line
for (int i = 0, n = strlen(s); i < n; i++)
printf("%c\n", *(s+i));

// free string
free(s);

}

What exactly is being returned by GetString()? It’s not actually the all
of the characters that make up the string, but rather a pointer to that
string. GetString() is actually assigning a chunk of memory based on



Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

how many characters the user types and then returning to the program
the memory address of the first byte of that string.

e Why are we checking for NULL? If the user hits Ctrl + D (the EOF signal)
we want to be sure we're not trying to manipulate data that doesn’t exist.
Just as importantly, however—another corner case—if the user gives us
a really long string, GetString() will return NULL if there isn’t enough
memory available to store it. We can figure out that it does this by
reading cs50.h, the header file which contains the function declarations
for CS 50’s library.

e Recall that the second step for using an external library’s code in your
programs (the first being to include the header file) is to link to the library
at compile-time, as with -1¢s50 or -1m. This tells the compiler to add in
the actual function definitions that have already been compiled, probably
into a .o file.

e The declaration of GetString() tells us that it returns an empty string
(“”) when the user hits Enter, not NULL. The empty string is actually rep-
resented in memory as ‘\0’ whereas NULL is not represented as anything
in memory.

e Also, the newline character is stripped from the user’s input before it is
returned by GetString().

e How do we make string a synonym for char *7 Like so:
typedef char *string;

FYT, it’s not necessary to have the asterisk right next to the data type it’s
pointing to, but it does make it clearer.

e What’s going on in the for loop of pointersi.c? First things first, the
value of n, as assigned by strlen, will be the length of the string in human
terms, e.g. 3 for “foo.” And if we're storing “foo” in s, and, let’s say the
characters ‘£’, ‘o’, ‘0’, and ‘\0’ are stored at memory locations 0x10,
0x11, 0x12, and 0x13 (separated by single bytes because each char is only
1 byte), then what’s stored in s is actually 0x10. So now imagine we’re
on the second iteration of the loop and i equals 1. The expression (s+i)
will then evaluate to 0x11 and the asterisk in front tells us to “go to the
memory address that follows,” so we check memory address 0x11 and o
gets printed out.

e As we’ll find out, this pointer arithmetic takes into account what data
type the pointer is pointing to. So the same expression, (s+i), would
work to grab each element of an array of int’s pointed to by s.

e Incidentally, note that we initialize n to the length of string s so that we
don’t have to call the function on every iteration of the loop.



Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e What does free(s) accomplish? GetString() is actually pretty poorly
implemented. Since we don’t know how much memory the program is
going to need to store the arbitrary number of characters typed by the
user, we have to allocate more than is necessary. And, in C, if allocated
memory is not explicitly freed, so to speak, then the program assumes
it’s still being used. This is called a memory leak. If you've ever left
your computer on for days at a time (or Firefox open for an extended
period of time, ugh), you might have noticed that more and more of your
computer’s RAM is being taken up but not actually being used. This is
due to memory leaks.

e To rectify this problem, we’ll begin calling the function free (), which de-
commissions the memory allocated by a call tomalloc(), as in GetString().

e pointers2.c is an example of what we alluded to earlier, namely that
pointer arithmetic works on arrays of data types other than strings, like
int’s for example:

[ kkok ok sk sk ok ok sk ok sk sk sk sk ke ok sk sk sk e ok sk sk ok sk ke ok sk sk sk ke ok sksk s e ok sk sk sk sk ok sk sk ok sksk sk e ok sk sk ok s ok sk sk ok ke ok sk sk ok ok ok ok
* pointers2.c

*
* Computer Science 50

* David J. Malan

*

* Iterates over an array of ints.

*

* Demonstrates pointer arithmetic.

sk sk sk sk sk sk sk sk sk sk sk ok o o ok sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk ok kst sk sk sk sk sk sk sk sk sk sk sk sk sk o ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ko sksk ok ok ok kkok /

#include <csb50.h>
#include <stdio.h>
#include <string.h>

int
main(int argc, char *argv[])
{
int numbers[] = {1, 2, 3, 4, 5};

printf("Size of array is J%d.\n", sizeof (numbers));

printf("Size of each element is %d.\n", sizeof (numbers[0]));

for (int i = 0, n = sizeof(numbers) / sizeof (numbers[0]); i < n; i++)
printf ("%d\n", *(numbers+i));

3

For now, ignore the initialization of n and pretend that the terminating
condition of the loop reads i < 5. In other words, it loops as many times



Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

as there are elements in numbers[]. When we run the program, we see
that it actually prints out the elements of numbers[]. Despite how it
appears, this pointer arithmetic is not buggy. Even though we’re only
adding 1 to the memory address of numbers on each iteration of the loop,
GCC knows that that 1 refers not to 1 byte but to 1 int, or 4 bytes. So
that’s the amount that it increments by.

3.2 Copying Strings

e Let’s say we want to write a program that copies one string to another
and then capitalizes the new version. Take a look at copyl.c:

[ 3kkok sk sk sk ok ok sk ok o ok sk sk sk e ok sk sk sk s ok sk sk ok sk ke ok sk ok sk ke ok sksk sk e ok sk sk sk sk ok sk sk e ok sksk sk e ok sk sk ok s ok sk sk ok ok sk sk ok ek ok ok
* copyl.c

*
* Computer Science 50

* David J. Malan

*

* Tries and fails to copy two strings.

*

* Demonstrates strings as pointers to arrays.

sk sk sk sk sk sk sk sk sk sk sk ok o o ok koo ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok o ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok kst ok ok ok kok /

#include <cs50.h>

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char xargv[])
{
// get line of text
printf("Say something: ");
char *sl1 = GetString();
if (s1 == NULL)
return 1;

// try (and fail) to copy string
char *s2 = si;

// change "copy"
printf ("Capitalizing copy...\n");
if (strlen(s2) > 0)

s2[0] = toupper(s2[0]1);



Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

// print original and "copy"
printf("Original: %s\n", s1);
printf ("Copy: %s\n", s2);

// free memory
free(sl);

When we run this program, however, we see that both the original string
and the copy are capitalized. The problem is that when we initialize s2,
we assign to it the value of s1, which is simply the memory address of the
string. Thus both s1 and s2 have the same memory address stored, so
they both point to the same string. If we modify the contents of memory
pointed to by s2, we also modify the contents of memory pointed to by
si.

e How do we fix this? We need a new chunk of memory which we can fill
with the original string so that it is truly a copy. This we accomplish in
copy2.c:

/e oksk sk sk ok sk sk sk ok sk sk e ok sk sk ok sk sk sk ok sk sk sk e sk sk s ok sk sk sk sk sk sk sk sk e sk sk s ok sk sk ok sk sk sk ok sk sk sk e ok sk sk ok sk ok ok
* copy2.c

Computer Science 50
David J. Malan

Copies a string.

¥ ¥ ¥ X X X %

Demonstrates strings as pointers to arrays.
stk sk sk sk sk sk sk sk sk sk sk ok ok ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk sk sksksksk sk sk sk sk s ok kokok ok ok sk sk sk sk sk sk sk sk sk sk sk ok kokok ok sk k ok ok /

#include <cs50.h>

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{
// get line of text
printf("Say something: ");
char #*s1 = GetString();
if (s1 == NULL)



Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

return 1;

// allocate enough space for copy
char *s2 = malloc((strlen(sl) + 1) * sizeof(char));
if (82 == NULL)

return 1;

// copy string

int n = strlen(sl);

for (int i = 0; i < n; i++)
s2[i] = s1[i];

s2[n] = °\0’;

// change copy
printf("Capitalizing copy...\n");
if (strlen(s2) > 0)

s2[0] = toupper(s2[0]);

// print original and copy
printf("Original: %s\n", s1);
printf ("Copy: %s\n", s2);

// free memory
free(sl);
free(s2);

}

Now, we’re beginning to empower you with the tools to take user input
using your own methods rather than relying on CS 50’s library. The
primary tool for this will be malloc (), which will give you the memory
you need to store the user’s input. malloc() takes as its only argument
a number of bytes. If we want to dynamically figure out the number
of bytes in the user’s input, we do so by knowing that each character
in the string is a single byte and that the number of characters in the
string is the length of the string plus one extra character for the null
terminator. Thus, strlen(sl) + 1). To be explicit, we’ll also multiply
this by sizeof (char), even though we know it to be 1. If we’re talk about
a string “foo,” then we’re passing the value 4 to malloc().

e After we allocate the required memory, we iterate over the characters of
s1 and copy them to s2. We explicitly add a null terminator although we
could simply iterate until i <= n to do the same. The former approach
might be better, though, because it handles the case where s1 is corrupt.

e Why do we check that strlen(s2) > 0 before capitalizing its first letter?
If there’s nothing in s2, then we’ll be asking for the first character of
nothing, or in other words touching memory that isn’t explicitly ours,



Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

which would likely cause a seg fault. Note that these kinds of errors are
often elusive because they appear only intermittently. As David showed
in lecture, we can sometimes get away with iterating over the first 100
elements of s1 even when the actual string length is considerably less. If
we bump that number up to much more than 100, we can cause a seg fault.
The size of core, which we can view by executing the 1s -1h command,
is almost half a megabyte, which corresponds to the amount of memory
the program was using at the time it forcibly quit. We can examine core,
by running the following command:

gdb <name of program> core

e Let’s use GDB to step through copy2:

29 char *s2 = malloc((strlen(sl) + 1) * sizeof(char));
(gdb) p s2

$2 = 0xbf9f0518 "x\005\2377P77\001"

(gdb) n

30 if (s2 == NULL)

(gdb) p s2

$3 = 0x804a008 "\020277\020277"

Notice that after the call to malloc, we have different garbage being stored
in s2. This is because malloc has assigned to it a new memory address
which is still uninitialized.

e If we step through the first few iterations of the loop and then print s2,
we see that it does get assigned the proper value:

(gdb) display s2
1: s2 = 0x804a008 "\020\2027\020\2027"

(gdb) n

36 s2[i] = s1[i];

1: s2 = 0x804a008 "\020\2027\020\2027"
(gdb) n

35 for (int i = 0; i < 1000; i++)
1: s2 = 0x804a008 "£\2027\020\2027"

(gdb) n

36 s2[i] = s1l[il;

1: s2 = 0x804a008 "£\2027\020\2027"

(gdb) n

35 for (int i = 0; i < 1000; i++)
1: 82 = 0x804a008 "fo?7\020\2027"

(gdb) n

36 s2[i] = s1[il;

1: s2 = 0x804a008 "fo?\020\2027"



Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

(gdb) n

35 for (int i = 0; i < 1000; i++)
1: s2 = 0x804a008 "foo7\020\2027"

(gdb) n

36 s2[i] = s1[i];

1: s2 = 0x804a008 "foo?7\020\2027"

(gdb) n

35 for (int i = 0; i < 1000; i++)
1: s2 = 0x804a008 "foo"

Note that s2 does in fact store “foo,” which displays properly in GDB as
soon as the null terminator is added to the end. If we execute continue,
now, we’ll get all sorts of errors relating to memory mismanagement.

e Recall our depiction of the stack and heap:

Lext

initialized data

uninitialized data

heap

|
|
b4

A
I
]

stack

environment variables

Previously, we noted that it was possible for the stack to overrun the
heap and cause a seg fault if we called a recursive function too many time

10



Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

because our finite amount of memory would be exhausted by frame after
frame being allocated for each function call. What exactly is the heap?
For our purposes now, it is where dynamically allocated memory is taken
from. So when you call malloc(), the chunk of memory that is allocated
comes from the heap. In the same way that the stack can overrun the
heap, the heap can overrun the stack and cause a seg fault.

e What’s on top (at least pictorially) of the heap? Uninitialized data and
initialized data. This includes things like global variables, e.g. board[] []
and d in fifteen.c. What’s interesting is that because we’'ve declared
them one after the other and not initialized either, they get stored in
contiguous memory above the heap. If you were to say, iterate past the
bounds of board, then, you might overwrite the value of d.

e What is the text segment of the program? The actual 0’s and 1’s that
compose your program on disk. The computer has to be able to read those
bits from somewhere, so it puts them at the very top of memory.

e One of the disadvantages of having this very regimented layout of memory
is that it’s predictable. Malicious users can exploit this in a number of
ways, the most common of which is to inject executable code into a pro-
gram. Software cracks are generally the result of this kind of exploitation
in which a user has figured out how to circumvent the serial number check,
for example. “Jailbreaking” the iPhone is a good example of this, as it
exploits some Apple code that fails to check the bounds of an array. In
general, one of the approaches to exploiting a program is to simply “bang
on it,” by which we mean give it inputs the programmer might not have
been expecting. We encourage you to do this to your own code to look
for possible bugs (because we the staff will do the same!). If a malicious
user can induce a program to crash, then he can begin to examine where
it crashed and possibly use this as an entry point for his attack.

e In the case of the iPhone, the cat-and-mouse game continues. The exploit
was quickly patched, only to be broken shortly thereafter. The advan-
tage goes to the malicious users because they need only find a single hole
whereas the programmers behind it have to find all the holes in order to
plug them.

e Check out The Evolution of a Programmer which speaks to the problem
of overengineering solutions to problems.

4 CS 50’s Library Revisited (65:00—78:00)

e ¢s50.h contains instructions for how to compile your programs on an
environment other than NICE, if you ever feel so inclined. Effectively,
you’ll be creating a .o file and then moving it to a designated location on
your Unix or Linux system.

11


http://www.ariel.com.au/jokes/The_Evolution_of_a_Programmer.html

Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

o Let’s take a look at the source code for GetInt ():

/*

* int

* GetInt()

X

* Reads a line of text from standard input and returns it as an

* int in the range of [-2731 + 1, 2731 - 2], if possible; if text

* does not represent such an int, user is prompted to retry. Leading
* and trailing whitespace is ignored. For simplicity, overflow is not
* detected. If line can’t be read, returns INT_MAX.

*/

int
GetInt ()

{

// try to get an int from user
while (true)
{
// get line of text, returning INT_MAX on failure
string line = GetString();
if (line == NULL)
return INT_MAX;

// return an int if only an int (possibly with
// leading and/or trailing whitespace) was provided
int n; char c;
if (sscanf(line, " %d %c", &n, &c) == 1)
{
free(line);
return n;
}
else
{
free(line);
printf ("Retry: ");

3

The syntax while(1) induces an infinite loop, which in this case isn’t
really a bad thing since we explicitly break out of it by executing the
return statement. You’ll notice that almost all of the functions in CS
50’s library use GetString(). This is consistent with our suggestion to
you that you factor out common code instead of copying and pasting it.

e Why do we return INT_MAX instead of, say, 0 on error? Well, if we returned

12



Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

0 then the user would never be able to type 0. Instead we chose the largest
int possible, the idea being that we would simply lower by one the range
of possible values that can be stored in an int. This would suggest that
you should’ve been checking all this time not whether GetInt () returned
NULL, but whether it returned INT_MAX. For the last few weeks, however,
this has been beyond the scope of our computer science knowledge, so
don’t worry, we forgive you.

e Take a look at the call to sscanf (), which is used to store the user’s input.
Notice we’re providing it with two pointers by using the &, or “address-of”
operator, for n and c. We also place a space in front of the format specifier
to indicate any number of spaces that the user types. sscanf () returns
the number of items successfully matched. If input doesn’t match the
type of the variable in which it is to be stored, the match is unsuccessful.
Because the %d comes first, this is the first data type it tries to match.
So if no integer is given at all, then sscanf() returns 0. Why the Y%c
then? If the user tries to get fancy and provides both a number and a
string, then sscanf () will return 2 because two matches were successfully
made. That’s why we’re checking that the return value is exactly one,
which means we matched an integer and only an integer.

e Notice that we’re only calling free() on line. This is because you can
only free memory that was allocated on the heap. n and c are local
variables. What’s useful about the heap is that its data persists even after
functions return.

e Finally, let’s examing GetString(), which does the grunt work of the
library:

/*
string
GetString )

Reads a line of text from standard input and returns it as a string,
sans trailing newline character. (Ergo, if user inputs only "\n",
returns "" not NULL.) Leading and trailing whitespace is not ignored.
Returns NULL upon error or no input whatsoever (i.e., just EOF).

* X X X ¥ X x

*/

string

GetString()

{
// growable buffer for chars
string buffer = NULL;

// capacity of buffer
unsigned int capacity = 0;

13



Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

// number of chars actually in buffer
unsigned int n = 0;

// character read or EOF
int c;

// iteratively get chars from standard input
while ((c = fgetc(stdin)) != ’\n’ && c != EOF)
{
// grow buffer if necessary
if (n + 1 > capacity)
{
// determine new capacity: start at CAPACITY then double
if (capacity == 0)
capacity = CAPACITY;
else if (capacity <= (UINT_MAX / 2))
capacity += 2;
else
{
free(buffer);
return NULL;
}

// extend buffer’s capacity
string temp = realloc(buffer, capacity * sizeof(char));
if (temp == NULL)
{
free(buffer);
return NULL;
}
buffer = temp;
}

// append current character to buffer
buffer[n++] = c;

3

// return NULL if user provided no input
if (n == 0 && c == EOF)
return NULL;

// minimize buffer

string minimal = malloc((n + 1) * sizeof(char));
strncpy(minimal, buffer, n);

free(buffer);

14



Computer Science 50 Week 4 Wednesday: September 30, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

// terminate string
minimal[n] = ’\0’;

// return string
return minimal;

}

The function fgetc() is used to grab each character of the user’s input
as long as it isn’t a newline character or the EOF character.

e The first if condition within this loop is checking that buffer is large
enough to store one more character. If it’s not, then we need to grow it
dynamically. Here, we're doubling it in size every time it needs to grow.
We do this via a call to realloc(), which, as its name implies, reallocates
memory that’s already been in use (if possible).

e The three lines of code commented by “minimize buffer” do the job of
returning only the number of bytes minimally needed to store the user’s
input. This is to avoid wasting resources.

15



	Geek Humor (0:00–10:00)
	Announcements (10:00–12:00)
	More on Memory (12:00–65:00)
	Pointer Arithmetic
	Copying Strings

	CS 50's Library Revisited (65:00–78:00)

