
Computer Science 50
Fall 2009
Scribe Notes

Week 5 Monday: October 5, 2009
Andrew Sellergren

Contents

1 Geek Humor (0:00–10:00) 2

2 Announcements (10:00–19:00) 2

3 Buffer Overrun Attacks (19:00–30:00) 3

4 structs (30:00–51:00) 5

5 More with Hexadecimal and File I/O (51:00–58:00) 10

6 Data and Forensics (58:00–70:00) 11

1

Computer Science 50
Fall 2009
Scribe Notes

Week 5 Monday: October 5, 2009
Andrew Sellergren

1 Geek Humor (0:00–10:00)

• For the Hacker Edition of Problem Set 2, students were tasked with deci-
phering the password hashes stored in /etc/passwd/ on a Linux system.
The crypt() function is generally used to create a series of random char-
acters from a given password using a one-way algorithm. We say it is
one-way because it’s very hard to derive the plaintext from the encrypted
string. This is why Linux administrators may be able to change your
password if you have forgotten it, but they can’t tell you what it is.

• For the curious, here are the decrypted passwords along with a little ex-
planation of the attempted humor behind them:

– julius: 13

– skroob: 12345

– wbrandes: voice

– baravelli: swordfish

– blaise: FOOBAR

– gcostanza: Bosco

– malan: ftw!!!111

julius was Caesar’s username with 13 corresponding to the ROT-13 algo-
rithm. skroob was from Spaceballs, wbrandes from Sneakers, baravelli
from an old Marx Brothers’ film, blaise being Vigenère himself, gcostanza
from Seinfeld. And malan FTW!

• Check out Pointer Fun for a fun (but also educational) tutorial on pointers.

2 Announcements (10:00–19:00)

• This is CS 50.

• Final projects aren’t far away, so it would behoove you to being tossing
around ideas in that old clunker of a brain of yours. Here’s an interesting
one brought to life by Phil, a teaching fellow from last year, using Flare, a
visualization library for Adobe Flash. What it does is show the different
pathways it is possible to take among computer science classes at Harvard.

• Our logo for the week is a Japanese character which has at least some
relevance to Sudoku. If you’re like me and were too daft to notice that
we’ve had a different logo for each week of the course so far, check out the
first page of each of the slide handouts.

• If you’ve already started Problem Set 4, you may have found it difficult to
debug using GDB when the ncurses graphics library is in use. Our own
Glenn Holloway has a solution for this:

2

http://www.youtube.com/watch?v=zKR3vFEkzxc
http://www.people.fas.harvard.edu/~fzembow/cs_classes.html

Computer Science 50
Fall 2009
Scribe Notes

Week 5 Monday: October 5, 2009
Andrew Sellergren

1. Connect to NICE in two separate terminal windows. Make sure
you’re connected to the same physical server on both. You can type
hostname to find out which server you’re on. If it’s not the same on
both, then logout on one window and login directly to that hostname,
say ice2, by typing ssh ice2.fas.harvard.edu.

2. On one terminal window, run sudoku, but add an & at the end of
the command, which will background the process and spit out a pid,
or process ID number, to identify the running program. You can
see that it’s running by typing ps to list all active processes on the
machine. You should see sudoku along with ps and tcsh, which is
the actual shell program itself.

3. In your other terminal window, type gdb sudoku <pid>, where pid
is the process ID number given to you upon running sudoku in the
other terminal window. Now we can debug our Sudoku program in
one terminal window while executing the program in another.

• Next Friday, 10/16 at 1:15 PM, will be the next Lunch with David et al.
RSVP at cs50.net/rsvp.

3 Buffer Overrun Attacks (19:00–30:00)

• Generally speaking, exploits are possible because humans aren’t perfect,
especially with regard to memory management. In languages like C and
C++, memory mismanagement usually boils down to misuse of a pointer.
One of the most common mistakes that a programmer can make in these
languages is to fail to check the bounds of an array which leaves the
program vulnerable to a buffer overrun attack. Take a look at the buggy
code below:

#include <string.h>

void foo (char *bar)
{

char c[12];

memcpy(c, bar, strlen(bar)); // no bounds checking...
}

int main (int argc, char **argv)
{

foo(argv[1]);
}

All this program does is to call a function named foo, which copies the
first command-line argument into a buffer named c. To do so, it uses the
memcpy function, which takes as its third argument the length of the string

3

http://cs50.net/rsvp

Computer Science 50
Fall 2009
Scribe Notes

Week 5 Monday: October 5, 2009
Andrew Sellergren

to be copied. So we’re doing at least one sanity check to make sure we
don’t copy more characters than the first command-line argument has.

• However, we’re not checking that the buffer c has enough space to store all
of the characters of the first command-line argument. If that command-
line argument is longer than 12 characters, then we’ll be writing past the
bounds of the c array and possibly overwriting something else on the stack.
We can visualize this like so:1

1Source: Wikipedia.

4

http://en.wikipedia.org/wiki/Stack_buffer_overflow

Computer Science 50
Fall 2009
Scribe Notes

Week 5 Monday: October 5, 2009
Andrew Sellergren

As the red rectangle indicates, the stack is used to store not only function
frames and parameters, but also a function’s return address. Thus, when
a function finishes executing, the program will know where in memory to
return to in order to continue.

• As you can see from this diagram, if we write more than 12 characters to
c, we’re going to first overwrite the value of bar followed by something
called the saved frame pointer, which allows the computer to remember
where in RAM it currently is. Next, we’ll overwrite or corrupt the return
address. If an adversary knows where on the stack this return address is,
he can overwrite it with a valid but different value which contains some
malicious code he wants to execute. Then, instead of returning to the
correct memory address, the program will jump to the malicious code
instead.

• As a webmaster, if you ever scroll through the request logs, you might
find some users are requesting what seems to be junk. Frankly, they’re
just trolling to see if they can crash your website which might reveal a
vulnerability they can exploit.

• Although the diagram above would suggest that an adversary needs to
know the exact memory location of his malicious code, the use of a NOP
sled actually lowers the bar considerably. This instruction, which stands
for “no operation” tells the program to skip over it and look for the next
executable instruction. By inserting a whole slew of these followed by
a jump to the top of the buffer, an adversary doesn’t have to correctly
guess the exact memory location of his malicious code, but only has to
come close, as the exact location will be reached by the series of no-op
instructions followed by the jump.

4 structs (30:00–51:00)

• So far we’ve only talked about primitive data structures, but what if we
want to store a chunk of related information about a single entity. For
example, a student has a name, a dorm, a phone number, etc. Can we
collect all these pieces of information into a single data structure?

• Yes, we can!2 We can do so using the typedef command, which we
previously used in CS 50’s library to alias a string to a char *. That data
structure is called a struct. Take a look at structs.h for an example of
how to define them:

/**
* structs.h
*

2Who was it that used that as a slogan? Was it Bob the Builder? Yeah, I think it was
Bob the Builder.

5

Computer Science 50
Fall 2009
Scribe Notes

Week 5 Monday: October 5, 2009
Andrew Sellergren

* Computer Science 50
* David J. Malan
*
* Defines a student for structs{1,2}.c.
***/

// structure representing a student
typedef struct
{

int id;
char *name;
char *house;

}
student;

Even though this is a fairly straightforward definition, notice that we’ve
abstracted it away into a separate header file so that it might be used by
many different programs, including structs1.c and structs2.c. These
will include this header file by writing:

#include "structs.h"

Here we’re using quotation marks instead of angle brackets because the
header file is local rather than on the server.

• Before we go over the syntax for defining a struct, let’s take a look at
structs1.c to see how to use one:

/**
* structs1.c
*
* Computer Science 50
* David J. Malan
*
* Demonstrates use of structs.
***/

#include <cs50.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "structs.h"

6

Computer Science 50
Fall 2009
Scribe Notes

Week 5 Monday: October 5, 2009
Andrew Sellergren

// class size
#define STUDENTS 3

int
main(int argc, char *argv[])
{

// declare class
student class[STUDENTS];

// populate class with user’s input
for (int i = 0; i < STUDENTS; i++)
{

printf("Student’s ID: ");
class[i].id = GetInt();

printf("Student’s name: ");
class[i].name = GetString();

printf("Student’s house: ");
class[i].house = GetString();
printf("\n");

}

// now print anyone in Mather
for (int i = 0; i < STUDENTS; i++)

if (strcmp(class[i].house, "Mather") == 0)
printf("%s is in Mather!\n\n", class[i].name);

// free memory
for (int i = 0; i < STUDENTS; i++)
{

free(class[i].name);
free(class[i].house);

}
}

So we’ve declared an array that contains three instances of the variable
type student. For now, know that student is simply a special name for a
struct that we’ve defined. The rest of the program asks the user for input
to populate our struct’s, checking for any students in Mather so that we
can call them out. Notice the syntax whereby we use a period to refer to
the inner elements of a struct. Also notice that we are finally explicitly
free’ing memory. We’re doing this even though we didn’t call malloc di-
rectly because we know that CS 50’s library functions, e.g. GetString(),
did call malloc. Whenever possible, we want to prevent memory leaks!

7

Computer Science 50
Fall 2009
Scribe Notes

Week 5 Monday: October 5, 2009
Andrew Sellergren

• structs1.c might not be all that interesting in terms of its output, but
it is interesting in that it’s the first example of a more sophisticated data
structure which we’ve defined ourselves. To step it up a notch, let’s see
what we can do with the data once we’ve created our custom data struc-
ture. Take a look at structs2.c:

/**
* structs.c
*
* Computer Science 50
* David J. Malan
*
* Demonstrates use of structs.
***/

#include <cs50.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "structs.h"

// class size
#define STUDENTS 3

int
main(int argc, char *argv[])
{

// declare class
student class[STUDENTS];

// populate class with user’s input
for (int i = 0; i < STUDENTS; i++)
{

printf("Student’s ID: ");
class[i].id = GetInt();

printf("Student’s name: ");
class[i].name = GetString();

printf("Student’s house: ");
class[i].house = GetString();
printf("\n");

}

8

Computer Science 50
Fall 2009
Scribe Notes

Week 5 Monday: October 5, 2009
Andrew Sellergren

// now print anyone in Mather
for (int i = 0; i < STUDENTS; i++)

if (strcmp(class[i].house, "Mather") == 0)
printf("%s is in Mather!\n\n", class[i].name);

// let’s save these students to disk
FILE *fp = fopen("database", "w");
if (fp != NULL)
{

for (int i = 0; i < STUDENTS; i++)
{

fprintf(fp, "%d\n", class[i].id);
fprintf(fp, "%s\n", class[i].name);
fprintf(fp, "%s\n", class[i].house);

}
fclose(fp);

}

// free memory
for (int i = 0; i < STUDENTS; i++)
{

free(class[i].name);
free(class[i].house);

}
}

Finally, we’re introducing a way of storing data on disk, which will allow
to persist beyond the program’s termination. The fopen function takes
two arguments: the name of the file to be opened (and created if it doesn’t
yet exist) and the mode in which that file is to be opened, ‘‘w’’ for write
mode, in this case. Notice we’re checking its return value for NULL. When
might it return NULL? If you don’t have privileges to open the file or if
there isn’t enough disk space, for example.

• Once we’ve opened the file, how do we write to it? The function fprintf
is like printf in that it takes format specifiers and fills them in with data
that you provide, but unlike printf, it doesn’t print the output to stdout
but rather to a file, designed by a file pointer given as the first argument.

• When we run structs2, now, we see that a file called database is created
which contains our data. Anytime you’ve ever saved a file, no matter
the extension, the file was simply created by laying out the data in a
predetermined, often proprietary way much as we created it here. Some file
formats are actually deceptively simple. JPEGs generally have a header
which announce it as a JPEG, then a large chunk containing the actual
photo data, and occasionally a footer that follows.

9

Computer Science 50
Fall 2009
Scribe Notes

Week 5 Monday: October 5, 2009
Andrew Sellergren

• This rigid structure of the JPEG file format is what will enable us in
Problem Set 5 to recover photos which have been “deleted” from a disk.
We’ll simply search for the header signature which identifies a JPEG and
continue reading until we find another header (so we know that another
photo is there) or we reach the end of the file.

• One useful feature of GDB that we haven’t yet investigated is the ability
to examine the stack. If we go back to bar.c and add a breakpoint once
the bar function is called, we can type backtrace to view the stack during
the program’s execution. It will show us something like this:

(gdb) backtrace
#0 bar (m=10) at bar.c:41
#1 0x08048584 in foo (n=5) at bar.c:34
#2 0x0804855c in main () at bar.c:24

If you do this while executing the sudoku program, you might find the
stack to have many more frames than just 2. Even if there are multiple
functions that you don’t recognize, chances are that they aren’t to blame
for your bugs, given that they belong to the ncurses library which has
been around for quite some time. The numbers on the left are the frame
numbers. If you type frame 2, for example, you can actually poke around
in main while bar is in the middle of its execution. Then you can print
out variables which are technically out of scope!

• If we print the address of a variable in main and compare it to the address
of a variable in a function called by main, we can see that the function
variable has a similar, but lower memory address compared to that of
the main variable. This coincides with our representation of the stack as
growing from bottom to top, but with larger memory addresses at bottom.

5 More with Hexadecimal and File I/O (51:00–58:00)

• Incidentally, I/O simply stands for input/output. A few other functions
that will come in handy for manipulating files in C:

– fopen/fclose

– fscanf/fprintf

– fread/fwrite

– feof

For reading character data from file, use fscanf. For reading and writing
binary data to and from files, use fread and fwrite. feof will tell you
when you’ve reached the end of a file.

10

Computer Science 50
Fall 2009
Scribe Notes

Week 5 Monday: October 5, 2009
Andrew Sellergren

• Hexadecimal digits can conveniently represent 4 bits, e.g. 1111 in binary
is equivalent to 0xF and 11111111 is equivalent to 0xFF, the value 255.
If you have any background in HTML, you’ll see hexadecimal codes to
represent colors. Colors are represented as red-green-blue (RGB) triples.
Pictures are composed of pixels, each of which has a color that can be
created with some combination of red, green, and blue.3 Red can be
represented as 0xFF0000, green as 0x00FF00, blue as 0x0000FF, black as
0x000000, and white as 0xFFFFFF.

• Because every hexadecimal digit represents 4 bits, we can represent 32-bit
memory addresses in 8 digits, e.g. 0xBF976C60. There’s one complication:
memory addresses can be either little-endian or big-endian, depending on
whether they are read right-to-left or left-to-right.

6 Data and Forensics (58:00–70:00)

• During one of David’s summers as a grad student4, he interned as a forensic
investigator at the Middlesex DA’s office. There he spent time recovering
data from confiscated hard drives in the hopes of compiling evidence.

• A short while ago, a story broke about the iPhone in which forensic data
analysts warned that private data was vulnerable to being stolen because
of the way in which Apple implemented the ability to press the home
button and quickly exit an app. The way Apple did this was to take
a screenshot and then quickly shrink the screenshot. This screenshot,
of course, was stored somewhere in the iPhone’s flash memory, making
it accessible to anyone who knows what they’re doing and has physical
access to the phone.

• In both cases, data which has been “deleted,” hasn’t always been perma-
nently removed. If you know what to look for, you can often recover this
supposedly inaccessible data.

• Browsers have histories and caches. Computers also offer the ability to
have the illusion of more RAM by reserving some hard disk space for
virtual memory. If enough programs are running, then some of the data
in RAM gets “paged to disk,” meaning it gets temporarily written to the
hard drive. Mac OS X gives the option under FileVault to encrypt the
home directory and also to “Use secure virtual memory,” which encrypts
the virtual memory swap space itself.

• If you really like this kind of stuff, check out CS 120!

• Hard drives, if they’re mechanical and not solid-state, are composed of cir-
cular platters which spin. The locations of files on those platters are stored

3Go reread your physics textbook, nerd.
4In, like, 1960, I think.

11

Computer Science 50
Fall 2009
Scribe Notes

Week 5 Monday: October 5, 2009
Andrew Sellergren

in a large table. When you delete a file, say by dragging it to the Recycle
Bin and even emptying the Recycle Bin, you’re not actually deleting the
data itself, but only deleting the entry in the table which contains the file
locations. This is actually for performance reasons, since historically the
act of actually overwriting the data on disk might’ve taken quite a while.
What would it mean to actually delete the data? Overwriting the data
with all zeroes would seem to do the trick.

• Of course, over time, there’s an increasing probability that a deleted file’s
data will simply be overwritten by virtue of having other files added to
disk.

• As one of David’s colleagues at MIT proved, it’s remarkably easy to recover
sensitive private data from discarded hard drives. He managed to find all
kinds of social security numbers, credit card numbers, and good ol’ pr0n
simply by buying up a large number of hard drives on eBay. His purpose,
of course, which we’ll present to you in his paper, was to show that many
programs which promise to erase or protect data fall way short of this
goal. So be careful!

12

	Geek Humor (0:00–10:00)
	Announcements (10:00–19:00)
	Buffer Overrun Attacks (19:00–30:00)
	structs (30:00–51:00)
	More with Hexadecimal and File I/O (51:00–58:00)
	Data and Forensics (58:00–70:00)

