
Computer Science 50
Fall 2009
Scribe Notes

Week 5 Wednesday: October 7, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–3:00) 2

2 Singly Linked Lists (3:00–64:00) 2
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Alternative Data Structures . . . . . . . . . . . . . . . . . . . . . 10

3 Bugs (64:00–70:00) 10

1



Computer Science 50
Fall 2009
Scribe Notes

Week 5 Wednesday: October 7, 2009
Andrew Sellergren

1 Announcements (0:00–3:00)

• This is CS 50.

• Quiz 0 will be held next Wednesday, 10/14, during normal lecture time.
Do not come to Sanders Theater, however, as you will be assigned to one
of three test-taking locations, as detailed in the About Quiz 0 handout.

• No class on Monday, 10/12, and no problem set next week!

• Also on the Quizzes page are 5 quizzes from past years. We highly recom-
mend that you use these as practice! There are, however, some differences
in material that was covered, so if you encounter a topic which is com-
pletely over your head, know that it might be because we haven’t gone
over it at all. Consult the syllabus or a TF if you have questions as to
what will be covered.

• Sections this week on Sunday, Monday, and Tuesday will be quiz review.
This Sunday from 7 to 8 PM in Emerson Hall 108 will be an optional
course-wide review. This will be filmed and placed online by Tuesday.
This review will take place in lieu of the weekly walkthrough.

• Next Friday, 10/16 at 1:15 PM, will be the next Lunch with David et al.
RSVP at cs50.net/rsvp.

• Finally, for a bit of geek humor, check out Star Wars in ASCII.

2 Singly Linked Lists (3:00–64:00)

2.1 Introduction

• The syntax we introduced last week for handling pointers is really the
last tricky syntax you’ll be asked to learn. This week, however, we’ll be
introducing a new data structure called singly linked lists. Singly linked
lists are an example of an abstract data type in C, which is to say that
they have not only data associated with them, but also operations. Al-
though structs are useful in that they encapsulate related information
into a single object, they don’t by themselves support any fundamental
operations.

• What are some of the downsides of arrays? You need to know the size of
an array when you declare it (if you do so statically). Even if we use a
pre-processor directive to specify the size, whenever we change the size,
we’ll need to recompile and rerun the program for it to take effect. And
this is, of course, something the user himself can’t do.

• Of course, now that we know how to use malloc, we can also dynamically
create an array, which is really just a chunk of memory.1 However, if

1This is as good a time as any to remind you to always check for NULL pointers before you
dereference them!

2

http://www.cs50.net/quizzes/2009/0/aboutquiz0.pdf
http://www.cs50.net/quizzes/
http://cs50.net/rsvp
http://www.asciimation.co.nz/


Computer Science 50
Fall 2009
Scribe Notes

Week 5 Wednesday: October 7, 2009
Andrew Sellergren

we want to add more elements to the array once the program is already
running, we’ll need to allocate a new, larger chunk of memory and then
copy the old array into the new one, making sure to free the old one
once we’re done. This is, in fact, the exact approach that we took in
implementing GetString() in the CS 50 library. One of the downsides is
that the burden is on us to keep track of the length of the array and grow
it if necessary.

• Singly linked lists redress this problem of fixed size. Just like our array
of structs, each of which encapsulated a student, imagine a singly linked
list of structs. Whereas the array could be represented as a series of
contiguous boxes, the singly linked list would be represented by boxes
which are not contiguous, but are “linked” in the sense that one leads to
another, like a chain. Whereas with an array, we only need to keep track of
the memory address of the first element—since all the other elements are
contiguous in memory—with a singly linked list, we have to keep track of
the memory location of each element. We do this by having each element
in the list keep track of the memory location of the next element in the list
in the form of a pointer. If we’re clever about it, we can simply include
this pointer in the definition of the struct. We should be careful that the
last pointer in the list is a NULL pointer to signal the end of the list. We
can visualize a linked list like so:

• Let’s step back for a moment and simplify things. Instead of creating a
singly linked list of students, let’s create a singly linked list of int’s. To
do this, we’ll need to define each single element of the list as storing both
an int and the location of the next element in the list. We’ll create a
struct to achieve this:

typedef struct node
{

int n;
struct node *next;

}
node;

Notice that the syntax is slightly different from what we used to declare
a student struct. By using the above syntax, we can declare a new node
instead of a new struct node, which are actually the same thing, the
former simply being shorter. The pointer in this struct is going to be
pointing to another one of itself, that is, another node.

3



Computer Science 50
Fall 2009
Scribe Notes

Week 5 Wednesday: October 7, 2009
Andrew Sellergren

• The various operations which are associated with linked lists are displayed
on the start-up menu of list1:

MENU

1 - delete
2 - find
3 - insert
4 - traverse
0 - quit

Insert and delete are trickier than they might appear at first. There are
actually three cases for insert and delete: the beginning, the middle, and
the end of the list. The way we’ve implemented insert in list1 is in sorted
order, thankfully.

• Although it might seem at first that learning this new data structure is
purely pedagogical given that we can perform all the same operations with
arrays, realize that for very large datasets, the time it takes to recopy an
entire array in order to insert an element in it will vastly exceed the time
it takes to insert the same element in an linked list.

• So how do we implement the insert operation for linked lists? Let’s take
a look first at the main method of list1.c:

/****************************************************************************
* list1.c
*
* Computer Science 50
* David J. Malan
*
* Demonstrates a linked list for numbers.
***************************************************************************/

#include <cs50.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include "list1.h"

// linked list
node *first = NULL;

4



Computer Science 50
Fall 2009
Scribe Notes

Week 5 Wednesday: October 7, 2009
Andrew Sellergren

// prototypes
void delete();
void find();
void insert();
void traverse();

int
main(int argc, char *argv[])
{

int c;
do
{

// print instructions
printf("\nMENU\n\n"

"1 - delete\n"
"2 - find\n"
"3 - insert\n"
"4 - traverse\n"
"0 - quit\n\n");

// get command
printf("Command: ");
c = GetInt();

// try to execute command
switch (c)
{

case 1: delete(); break;
case 2: find(); break;
case 3: insert(); break;
case 4: traverse(); break;

}
}
while (c != 0);

// free list before quitting
node *ptr = first;
while (ptr != NULL)
{

node *predptr = ptr;
ptr = ptr->next;
free(predptr);

}
return 0;

}

5



Computer Science 50
Fall 2009
Scribe Notes

Week 5 Wednesday: October 7, 2009
Andrew Sellergren

First we have the prototypes and pre-processor directives. Then a do-
while loop takes the user’s input and calls the appropriate function via a
switch statement. At the end, we free all the memory we’ve been using.
Notice that the first call to printf has multiple strings passed to it, which
is perfectly acceptable syntactically.

• So how do we represent an empty linked list? As you can see in the code
above, we declare a global pointer-to-node and initialize it to NULL.

2.2 Insertion

• Before we take a look at the actual code, let’s make some educated guesses
as to what insert() is actually doing:

1. Take in user’s input:
n = GetInt();

2. Declare new node to store the user’s input:
node *ptr = malloc(sizeof(node));2

3. Assign the user’s input to the newly created node:
ptr->n = n;3

4. Make sure the new node points to NULL:
ptr->next = NULL;

5. Point our list pointer to the new node, the first and only element:
first = ptr;

• We can visualize these steps using people! We’ll start with Alex, who
represents a NULL pointer. Then we allocate Olga, who represents an 8-
byte chunk of memory. In her n field (held in her right hand), we’ll put
the number 2. Then we’ll have Alex point to Olga, the only member of
the list. Next we allocate Julie and give her the value 3 to hold in her
right hand. Now we need to step back for a second.

• If the goal is a sorted linked list, we need another pointer to traverse the
list and find where to insert the next value. So we point where Alex is
pointing (at Olga) and check her value. It’s 2, which is less than the value
to be inserted, so we keep walking. Next is NULL, however, so we know
that Julie goes at the end of the list. We assign to Olga’s next pointer
(represented by her left hand), the memory location of Julie.

• Finally, we allocate Robert and assign him the value 1. He’s floating
around somewhere in memory. When we traverse the list this time, now,
we find that he should go before Olga. So what if we start by pointing

2We could ask for 8 bytes explicitly, but it’s safer to dynamically determine the size of a
node in case we change what it contains, for example.

3Despite the similar variable names, the compiler knows which one is the local variable
and which one belongs to the struct.

6



Computer Science 50
Fall 2009
Scribe Notes

Week 5 Wednesday: October 7, 2009
Andrew Sellergren

Alex to Robert, now? We’ll lose the rest of the linked list because we no
longer know where in memory it is stored.

• Instead we’ll have Robert point to Olga first. Now when we have Alex
point to Robert, we won’t lose our linked list. One of the compelling things
about linked lists can be visualized now. Robert might be anywhere in
memory, but so long as he points to the next element in the linked list,
we can maintain the integrity of the list. So there’s no shuffling around
in memory when we insert a new element to the list. In contrast, if we
want to insert a value into the middle of an array, we have to shift all the
values down by one and we start increasing our running time.4

• Know that these operations are depicted in the lecture slides. For now,
we’ll concentrate on the actual C syntax that implements them. Take a
look at insert():

/*
* void
* insert()
*
* Tries to insert a number into list.
*/
void
insert()
{

// try to instantiate node for number
node *newptr = malloc(sizeof(node));
if (newptr == NULL)

return;

// initialize node
printf("Number to insert: ");
newptr->n = GetInt();
newptr->next = NULL;

// check for empty list
if (first == NULL)

first = newptr;

// else check if number belongs at list’s head
else if (newptr->n < first->n)
{

newptr->next = first;

4In the video, David inadvertently mentions quadratic running time. He was referring to
insertion sort, not insertion into an array!

7



Computer Science 50
Fall 2009
Scribe Notes

Week 5 Wednesday: October 7, 2009
Andrew Sellergren

first = newptr;
}

// else try to insert number in middle or tail
else
{

node *predptr = first;
while (true)
{

// avoid duplicates
if (predptr->n == newptr->n)
{

free(newptr);
break;

}

// check for insertion at tail
else if (predptr->next == NULL)
{

predptr->next = newptr;
break;

}

// check for insertion in middle
else if (predptr->next->n > newptr->n)
{

newptr->next = predptr->next;
predptr->next = newptr;
break;

}

// update pointer
predptr = predptr->next;

}
}

// traverse list
traverse();

}

To reiterate, we call sizeof when calling malloc not only because we
might expand the definition of a node later on, but also because the com-
piler will not always return the exact number of bytes required to imple-
ment a node, but will often perform some optimizations in order to align
it in memory along 4-byte chunks with some gaps in between.

8



Computer Science 50
Fall 2009
Scribe Notes

Week 5 Wednesday: October 7, 2009
Andrew Sellergren

• Once malloc returns, we do a sanity check to make sure it didn’t return
NULL. If it did and you were to try to dereference it, your program would
seg fault. This is a feature of C.5 Essentially, the compiler is preventing
you from accessing the memory address 0x0, even though it does exist.

• In the next few steps, we follow those which we guessed a few moments
ago. We take in the user input and assign it to the new node in addition
to pointing its next pointer to NULL.

• Now we handle the cases we mentioned earlier. First, we check if the list
is empty, which is the easiest case. Next, we handle the case where the
new node belongs at the beginning of the list. Finally, the middle and end
cases can be handled the same way.

• Recall our humans example. We pointed Robert to Olga and then Alex
to Robert. But in our syntax above, we’re assigning first to our node
to be inserted. Why does this work? Well first, recall, is simply the
memory address of the first element of the list, which would be Olga. So
this assignment is equivalent to pointing Robert to Olga. Next we update
Alex, telling him to point to Robert, the new first element of the list.

• When we tackle the middle and end cases, we’ll need to bring in predptr,
which plays the same role as we did when we traversed the list looking
for the place to insert the new node. First we’re checking for duplicates
and if we find the value is already inserted, then we won’t insert it again.
This feels a little wasteful, though, since we’ve already allocated a new
pointer and executed several other steps. What’s the alternative? We
could traverse the whole list searching for the value in question. But
this, in effect, doubles our running time, so it’s not ideal either. An
improvement, then, might be to allocate a new pointer only when we’re
sure we need it. This ends up in a copy-paste job, which is not ideal,
either.

• The end case, or tail case, is easier to handle than the middle case. All
we need to do is point the next pointer of predptr, which is pointing at
the last element of the list, to the new node.

• The middle case is perhaps the most complicated, yet it only actually
requires two pointer updates. Thus, we’ve only seen two general cases:
one that requires a single pointer update and one that requires two pointer
updates.

• Note that the singly in singly linked list implies that we can only move in
one direction down the list, in this case forward. If we want to traverse in
both directions, we’ll need to add a pointer to each element which points
to the previous element in the list. This creates a doubly linked list. If we

5When you become an enterprise-level programmer, everything’s a feature and nothing’s
a bug.

9



Computer Science 50
Fall 2009
Scribe Notes

Week 5 Wednesday: October 7, 2009
Andrew Sellergren

had implemented a doubly linked list to begin with, we wouldn’t need the
temporary predptr variable. So there’s a tradeoff between performance
and memory. We can improve our algorithm’s running time at the cost of
extra memory to store the additional pointers.

• How do we determine the length of a linked list? We have to traverse it.
As soon as we encounter the NULL pointer, we know we’re at the end of the
list. This can be slow, of course, so why don’t we do it once and store the
result? There’s no reason, after all, that the pointer to the first element
of the list has to be only a pointer. We could make a separate struct
that would encapsulate both the pointer to the first element and the size
of the list. Each time we inserted an element in the list, then, we’d also
need to update the stored size of the list.

2.3 Alternative Data Structures

• Another data structure we’ll discuss is a stack. We might represent this
visually as a stack of cafeteria trays. This conveys the idea that the last
tray added is the first one out. We call this LIFO (last in, first out). This
has some applications which are covered in CS 121. In addition, HTML
tags have a hierarchical structure which can be described as LIFO. How
could you implement this idea of a stack in C? It’s just an array flipped
vertically, at least conceptually. Of course, with a stack, you don’t have
random access, as you do with an array, but only access to the topmost
element. Moreover, an array isn’t an abstract data type, per se, because
it has no operations associated with it. A stack, however, has push and
pop operations associated with it.

• Queues are another data structure which we’ll discuss. They exhibit a
FIFO (first in, first out) policy, which is, frankly, much more “fair” than
a stack. Queues, like linked lists, have insert and delete operations asso-
ciated with them. Routers are one example of hardware which implement
queues as a way of dealing with network traffic. Router queues also allow
traffic to be prioritized: for example, voice traffic could be prioritized over
movie downloads.

3 Bugs (64:00–70:00)

• The Blue Screen of Death (BSOD) is perhaps one of the more famous ex-
amples of bugs. This points to an error in a VXD (virtual device driver)
at a memory address denoted in hexadecimal. Although it might seem
useless, the error code given might actually be useful to some Microsoft
programmer somewhere. Likewise with the Application Error alert win-
dow. Check out the slides for many more fun (or perhaps not so fun) bugs
and errors.

• PC Load Letter?

10

http://www.youtube.com/watch?v=rJ8SefiNEcs

	Announcements (0:00–3:00)
	Singly Linked Lists (3:00–64:00)
	Introduction
	Insertion
	Alternative Data Structures

	Bugs (64:00–70:00)

