Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

Contents
1 Announcements (0:00-5:00) 2
1.1 Baby Steps 2
2 Dynamic Web Development with PHP and SQL (5:00-75:00) 2
2.1 A Command-Line Stock Lookup Application 2
2.2 A Frosh IMs Registration Application 5
2.2.1 E-mailing Data 0000 9
2.2.2 Storing Data o 14

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

1 Announcements (0:00-5:00)

1.1

e This is CS 50.
e 0 new handouts.

e Don’t forget office hours! This time of year, as the course starts acceler-

ating and the material gets more difficult. We’ll be diverting more hours
toward earlier in the week since you all seem to have learned the lesson
that starting the problem sets earlier rather than later is best practice!
We realize, also, that OHs may not be the most nurturing environment
for those of you struggling with the larger concepts rather than single lines
of code. Do feel free to e-mail any of the staff directly or heads@cs50.net
if you’d like to set up a one-on-one appointment.

Dinner with David (and faculty) next Wednesday at 6 PM. Also Lunch
with David next Friday at 1:15 PM. RSVP here.

Baby Steps

Even though the problem sets have gotten larger, you will still benefit
greatly from approaching them in bitesize chunks. For that very reason,
the problem set specifications are written with checkboxes in place so that
you can check off one task at a time.

Problem Set 6, for example, asks you to implement a dictionary. However,
more specifically, it asks you to implement 1oad (), unload(), size (), and
check (). Of those four functions, you almost certainly need to start with
load (). But don’t tackle a trie or hash table implementation all at once.
Start by opening the dictionary file and just counting the characters in it,
perhaps. At least you will be making forward progress.

Even CS ninjas like David! take baby steps like this. When he was imple-
menting HarvardTweets, for example, he first took on the task of amassing
the tweets in a database. Then he implemented the skeleton of a webpage
with markers that said “content here.” Slowly but surely he moved toward
the final goal.

2 Dynamic Web Development with PHP and SQL (5:00-75:00)

2.1

A Command-Line Stock Lookup Application

e One major drawback to the web pages we implemented last time is that

they are all static. Their content is not going to change based on who
is visiting the site or when he is visiting. Ultimately, static sites aren’t
nearly as interesting as dynamic sites.

L(scoff)

http://www.cs50.net/ohs
mailto:heads@cs50.net
http://www.cs50.net/rsvp

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

o If we visit Yahoo’s stocks site and look up Google’s stock price, it’s very
easy for us as humans to view the source and find that stock value within
the HTML. However, for a machine to do the same thing using screen-
scraping is actually much more difficult, though not impossible.

e Actually, instead of screen-scraping Yahoo's stocks page, we have a much
better option: downloading the data as comma-separated values (CSV). As
the name implies, this simply means that each of the fields is separated by
a comma. Generally speaking, this is much easier to parse than an entire
web page. The data for GOOG might look like the following:

"GOOG", 541.166,"10/28/2009","1:03pm"

Even without knowing exactly what the fields are, we can infer that the
first is the stock symbol, the second is probably the trade price, and the
third and fourth are the date and time of the lookup. Incidentally, CSV
files can be opened with programs like Excel, which will automatically
display them as spreadsheets.

e Let’s start by fetching that URL (which returns the CSV file) using PHP:

<?
$url =
"http://download.finance.yahoo.com/d/quotes.csv?s=G00G&f=s11dltlclohgv&e=.csv";

$fp = fopen($url, "r");
$row = fgetcsv($fp);

print_r($row);
>

The <? and ?> are open? and close tags which signal that the lines within
should be parsed by the PHP interpreter. As well, we need to save our
file with a .php file extension so that the server knows to pass the file to
the PHP interpreter before serving it up to the browser.

e The syntax for opening in PHP is nearly identical to that in C. One
difference is that variables in PHP begin with $. Also, they do not have
type declarations before them. This loose data typing can be alternately
an advantage and a disadvantage of PHP.

e The function fgetcsv() actually parses the CSV file for us. It will return
an array containing the first row of the CSV file. If we pass this value to
print_r(), we can see this array printed out.

2 Actually this is the short open tag. The conventional long version is <?php.

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e But how do we run a PHP program? As we said earlier, PHP requires
an interpreter. Unlike C, PHP is not a compiled language, so at runtime,
it must be passed to another program which will parse it and cause its
instructions to be executed. On a Linux computer, this program is php, so
we can run php quote.php from our command line to see the following:

Array

(
[0] => GOOG
[1] => 541.90
[2] => 10/28/2009
[3] => 1:08pm
[4] => -6.39
[6] => 546.51
[6] => 550.00
[7]1 => 539.50
[8] => 1558790

e So now we know that the stock price is contained in the first index of the
$row array, we can access it using syntax similar to C:

<?
$url =
"http://download.finance.yahoo.com/d/quotes.csv?s=G00G&f=s11d1ltlclohgv&e=.csv";

$fp = fopen($url, "r");
$row = fgetcsv($fp);

print ($rowl[1]);
print("\n");
7>

e Okay, this is somewhat more dynamic than what we built last time, but
it’s only dynamic because the stock price itself is changing. What if we
want to look up a stock other than Google?

e Notice in the $url variable this part of the string: s=G00G. Recall from last
time when we re-implemented Google that the actual query was passed
to Google’s servers in the URL. Recall also that it was named q. Here, it
seems, we have something similar. The stock symbol is being passed to
Yahoo via the URL. We can also see that the list of parameters begins
with a ? and each parameter is separated by an & For now, we don’t
really know what the rest of the parameters in the URL actually mean.

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e Instead of hardcoding in the value GOOG, then, let’s try making the symbol
dynamic at runtime by inserting a variable which takes the value of a
command-line argument:

<7
$symbol = $argv[1i];

$url =
"http://download.finance.yahoo.com/d/quotes.csv?s=$symbol&f=sl1diticlohgv&e=.csv";

$fp = fopen($url, "r");
$row = fgetcsv($fp);
fclose ($fp);

print ($rowl1]);
print("\n");
7>

This $argv certainly looks familiar. Turns out the array of command-line
arguments is named the same in PHP as it was in C. One other thing to
note is that because double quotes are “magic” in PHP, we don’t have to
mess around with concatenation. We can simply place $symbol between
the quotes and its value will automatically be inserted at runtime. This
is called interpolation.

e Now we can run from the command line php quote.php <symbol>, where
<symbol> is a valid stock symbol. The current stock price will then be
printed out to stdout, like so:

csb00@cs50.net (7): php quote.php GOOG

541.58

¢s500@csb0.net (7): php quote.php MSFT
28.2915

csb0@cs50.net (7): php quote.php YHOO
16.30

2.2 A Frosh IMs Registration Application

e Recall from last time that David, as a sophomore, undertook the task of
implementing an electronic registration module for frosh IMs in order to
replace the annoyingly inefficient paper-based system. The language he
was using at the time was Perl, but today we can mimic his application
using PHP. Take a look at froshims1.php.

http://cloud.cs50.net/~cs50/lectures/8/src/froshims/froshims1.php

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e Looks like we have a text field, a checkbox, a radio button, and a select
menu. Amazingly, pretty much all the user-driven websites out there rely
on these simple HTML forms in order to get input from the user. Take a

look at the source code:

<7?

7>

<!

[3kokskk stk sk ok sk ok sk ok sk sk sk ks sk sk sk ok sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk ok
* froshimsl.php

*

Computer Science 50

David J. Malan

Implements a registration form for Frosh IMs.
Submits to registerl.php.
skskskok ok sk skok ok ok skskok ok skskosk sk ok sksk sk sk ok sksk sk sk ok sksksk ok sksksk sk ok ok sksk sk ok skskok sk ok sk sk sk sk ok skskok ok /

*
*
*
*
*

DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<title>Frosh IMs</title>
</head>
<body>
<div align="center">
<h1>Register for Frosh IMs</h1>

<form action="registerl.php" method="post">
<table border="0" style="text-align: left;">
<tr>
<td>Name:</td>
<td><input name="name" type="text" /></td>
</tr>
<tr>
<td>Captain:</td>
<td><input name="captain" type="checkbox" /></td>
</tr>
<tr>
<td>Gender:</td>
<td><input name="gender" type="radio" value="F" /> F
<input name="gender" type="radio" value="M" /> M
</td>
</tr>
<tr>

Computer Science 50
Fall 2009
Scribe Notes

Week 8 Wednesday: October 28, 2009
Andrew Sellergren

<td>Dorm:</td>
<td>
<select name="dorm" size="1">
<option value=""></option>

<option value="Apley Court">Apley Court</option>

<option value="Canaday">Canaday</option>
<option value="Grays">Grays</option>

<option value="Greenough">Greenough</option>
<option value="Hollis">Hollis</option>
<option value="Holworthy">Holworthy</option>
<option value="Hurlbut">Hurlbut</option>
<option value="Lionel">Lionel</option>
<option value="Matthews">Matthews</option>
<option value="Mower">Mower</option>

<option value="Pennypacker">Pennypacker</option>

<option value="Stoughton">Stoughton</option>
<option value="Straus">Straus</option>
<option value="Thayer">Thayer</option>
<option value="Weld">Weld</option>

<option value="Wigglesworth">Wigglesworth</option>

</select>
</td>
</tr>
</table>

<input type="submit" value="Register!" />
</form>
</div>
</body>
</html>

Note that even though this is a PHP file, there’s actually no dynamic
content—no actual PHP code. We’ll change that with later versions. We
saw most of these tags last time, namely hi, br, form, title, head, body,
and html itself. One new one is div, which simply designates a division.

We saw last time the action attribute of form, which specifies where the
user input is sent. We can also assign the method attribute which specifies
how the data will be sent. For our purposes, method can either be get or
post. If get, the data will be passed in the URL, as we have seen with
Yahoo and Googlel. If post, the data will be passed in the headers of the
HTTP request.

Aesthetically, we're using a table to lay out our HTML form. We can
reveal this table by adding a border attribute with the value 1. The tags
tr and td designate rows and cells of tables, respectively.

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e In the select menu, we assign 1 to the size attribute so that only one
option gets shown at once. As well, we assign the empty string as the first
option so that “nothing” is selected by default.

e It’s worth noting that form elements can always have a value that’s dif-
ferent from what they display. So we could’ve assigned a numeric value
for each dorm, for example.

e Ultimately, the form ends with a submit button. If we click it, we get a
dummy message saying that we’ve registered. The URL has changed to the
value specified in the action attribute of the form, namely registerl.php.
Let’s take a look at its source code:3

<7
/K ke ook sk ok o o sk sk ok ok o sk sk ok o sk sk ok sk o sk ok sk o sk ok ok s o sk sk ok sk o ok sk ok sk o ok sk ok ok o ok sk ok ok o ok sk ok ok
* registerl.php

*

* Computer Science 50
* David J. Malan
*
*
*

Implements a registration form for Frosh IMs.
Redirects user to froshimsl.php upon error.
sk sk sk ok o ok sk sk ok o ke ok sk sk sk ke ok sk sk sk e ok sk sk sk sk ok ok sk sk ke ok sksk sk s ok sk sk sk sk ok sk sk ok sk sk sk sk ke ok sk sk ok ok sk sk ok /

// validate submission
if ($_POST["name"] == "" || $_POST["gender"] == "" || $_POST["dorm"] == "")
{

$location = "http://cloud.csb0.net/"cs50/lectures/";
$location .= "8/src/froshims/froshimsl.php";

header("Location: $location");
exit;

7>

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Frosh IMs</title>

3Note that my code below differs slightly from the source code posted on the website. I
had to break apart the URL so that it would be readable.

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

</head>
<body>
You are registered! (Well, not really.)
</body>
</html>

For the first time, we've commingled PHP and XHTML. In the same
vein, we could’ve printed out XHTML tags within our command-line stock
lookup application so that the stock price would display properly in a
browser.

e We are accessing the input passed from the user via the forms using a vari-
able named $_POST. This is actually an associative array, a superglobal
one, to be specific, which is pre-populated with the key-value pairs corre-
sponding to the user’s input. So, for example, because we assigned gender
to the name attribute of the radio button field, we access the radio button
input via $_POST["gender"]. In this file, we’re doing a simple check: if
any of the fields (except the captain field) is blank, then return the user
back to the registration page. We redirect the user to a different URL
using the header () function.

2.2.1 E-mailing Data

e Of course, we're still not actually registering the user. Let’s skip ahead to
register3.php:

<7
/***

* register3.php

Computer Science 50
David J. Malan

Implements a registration form for Frosh IMs.

Reports registration via email.

Redirects user to froshims3.php upon error.

sk stk ok skskok ok ook sk ok ok skskosk ok sksksk sk sk sk sk sk ok ok sk sk ok sksksk sk ok sksksk sk ok ok sk ok skskok ok sk sksk sk ok skskok ok /

*
*
*
*
*
*
*

// validate submission
if ($_POST["name"] !'= "" && $_POST["gender"] !'= "" && $_POST["dorm"] != "")
{

$to = "malan@cs50.net";

$subject = "Registration";

$body = "This person just registered:\n\n
$_POST["name"] . "\n"
$_POST["captain"] . "\n"

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

$_POST["gender"] . "\n"
$_POST["dorm"];
$headers = "From: malan@cs50.net\r\n";
mail($to, $subject, $body, $headers);

}

else

{
$location = "http://cloud.csb50.net/"csb0/lectures/";
$location .= "8/src/froshims/froshims3.php";
header("Location: $location");
exit;

}

7>

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmli-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Frosh IMs</title>
</head>
<body>
You are registered! (Really.)
</body>
</html>

froshims3.php is actually no different than froshims1.php except that
it submits to register3.php instead of registerl.php. We just changed
the action attribute so that the numbering would match up.

e A reasonable upgrade from paper-based registration would be to send an
e-mail to the proctor who was in charge of keeping track of registrants.
Again, we're checking that none of the important fields are blank. If they
aren’t, then we assign a few variables, namely, the recipient ($to), the
subject of the e-mail ($subject), the body of the e-mail ($body), and the
headers of the e-mail ($headers). To assign the body of the e-mail, we
make heavy use of the dot or concatenation operator, which attaches each
of the quoted strings end-to-end along with newline characters. Finally,
we send the e-mail by calling the mail () function.

e If any of the important registration fields are blank, we redirect the user.
However, if the mail is successfully sent, then we continue on down to
output the XHTML at the bottom, which spits out a message saying
that registration has succeeded. If we actually click Submit and we check
David’s CS 50 mail account, we can see that a message has been sent!

10

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e If a user makes a request for a PHP page, the web server not only has
to find that PHP file, it also needs to pass it to the PHP interpreter
before sending output back to the user. This is actually a simple matter
of configuring the web server to do so with any files ending in .php (or
custom file extensions). Because of this middle man interpreter, serving
up PHP content is slower than serving up static HTML content.

e Question: what’s to stop us from making up an e-mail address for the
registration e-mail to be sent from? Nothing, in fact! It’s very easy to
spoof an e-mail address in this way. Not recommended, though, as you
can be sent to the Ad Board for impersonating another student’s address.
David actually got in trouble once for chiming in on behalf of someone he
disagreed with. He spoofed the guy’s e-mail address but forgot to get rid
of the automatically appended signature. Oops!*

e One of the other problems with our implementation is that if the user
provides invalid input, he receives no feedback, but only gets bounced
back to the registration page. register2.php, however, provides some
feedback:

<7
/Ko ok ok sk ok ok ok sk sk ok e ok sk sk ok s ok sk sk sk ok ok sk sk sk e ok sk sk ok sk ok sk ok sk e ok sk sk sk s ok sk sk sk sk ok sk sk ek sk sk ok s sk sk ok ok ke k ok
* register2.php
*

Computer Science 50

David J. Malan

Implements a registration form for Frosh IMs.
Informs user of any errors.
skt ok sk sk ok ok sksk ok ok skskok ok sk sk sk sk sk sk sk sk ok sksksk sk ok sksksk ok sksksk sk ok sksk sk ok skskok sk ok sk sk sk sk ok sk skok ok /

*
*
*
*
*

7>

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Frosh IMs</title>
</head>
<body>
<? if ($_POST["name"] == "" || $_POST["gender"] == "" ||
$_POST["dorm"] == ""): 7>
You must provide your name, gender, and dorm!
Go back.

4Seriously, though, you will get caught.

11

http://www.youtube.com/watch?v=kBF1lsZUlUI

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

<? else: 7>
You are registered! (Well, not really.)
<7 endif 7>
</body>
</html>

Here’s a new syntactic trick. If we end the if statement with a colon, then
whatever comes next in XHTML will be printed only if the statement
is satisfied. Otherwise, the XHTML that comes after the else will be
displayed. Finally, we end with an explicity endif.

e Another of the downsides of our implementation is that if a user in-
puts invalid data, then he has to click the back button, in which case
all of the data he previously inputted has disappeared. We can fix this
by implementing a registration form that submits to itself, as we do in
froshims4.php:

<?
[/ Hoksksksk sk sk sk sksk sk sk ok o ok ok ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok ke sk sk ok sk sk sksksksk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk o ok ok k ok
* froshims4.php
*

Computer Science 50

David J. Malan

Implements a registration form for Frosh IMs.
Submits to itself.
sk stk ok ok skskok o ok sk ok ok sk sk ok sk sk sk ok ok sk sk sk sk ok ok sk sk ok sksk sk ok sksk sk sk ok ok sk sk ok skskosk ok sk sk sk sk ok skskk ok /

*
*
*
*
*

// if form was actually submitted, check for error
if ($_POST["action"])

{
if ($_POST["name"] == "" || $_POST["gender"] == ""
|| $_POST["dorm"] == "")
$error = true;
}

7>

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmli-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Frosh IMs</title>
</head>

12

Computer Science 50
Fall 2009
Scribe Notes

<body>

<div align="center">

Week 8 Wednesday: October 28, 2009
Andrew Sellergren

<hi1>Register for Frosh IMs</h1>

<? if ($error): 7>

<div style="color: red;">You must fill out the form!</div>

<7 endif 7>

<form action="froshims4.php" method="post">
<table border="0" style="text-align: left;">

<tr>

<td>Name:</td>
<td><input name="name" type="text" /></td>

</tr>
<tr>

<td>Captain:

</td>

<td><input name="captain" type="checkbox" /></td>

</tr>
<tr>

<td>Gender:</td>
<td><input name="gender" type="radio" value="F" /> F
<input name="gender" type="radio" value="M" /> M

</td>
</tr>
<tr>

<td>Dorm:</td>

<td>

<select name="dorm" size="1">

<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
</select>
</td>

value=""></option>

value="Apley Court">Apley Court</option>
value="Canaday">Canaday</option>
value="Grays">Grays</option>
value="Greenough">Greenough</option>
value="Hollis">Hollis</option>
value="Holworthy">Holworthy</option>
value="Hurlbut">Hurlbut</option>
value="Lionel">Lionel</option>
value="Matthews">Matthews</option>
value="Mower">Mower</option>
value="Pennypacker">Pennypacker</option>
value="Stoughton">Stoughton</option>
value="Straus">Straus</option>
value="Thayer">Thayer</option>
value="Weld">Weld</option>
value="Wigglesworth">Wigglesworth</option>

13

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

</tr>
</table>

<input name="action" type="submit" value="Register!" />
</form>
</div>
</body>
</html>

Now we have two cases: the user is visiting for the first time or the user
has already submitted data and we need to tell them whether it’s valid or
not. To distinguish these two cases, we have an if condition at the top of
the file which checks whether the action index of the $_POST superglobal
is set or not. If it is, then the user must’ve gotten here by submitting the
form already, so we go ahead and validate the data. If the data is invalid,
we set a flag variable named $error to true. Even though this variable is
declared within curly braces, its scope is global by default in PHP. Later,
we check if $error is set, in which case we print out an error message.

2.2.2 Storing Data

e Although we’ve improved on the paper-based system, we’d like to go one
step further and actually store the data in a more convenient format than
e-mail, perhaps CSV. Even CSV isn’t very convenient, however, and we
might go one step further and implement an actual SQL database.

e The database engine we’ll use in CS 50 is MySQL, mostly because it’s
free, well-documented, and widely used. However, there are many other
options out there, including SQL Server and Oracle.

e Back in the day, you would’ve only been able to interact with a database
using the command line. However, now there’s a convenient GUI called
phpMyAdmin which allows you to interact with your databases using a
website.

e You can think of a SQL database as an Excel spreadsheet, each of whose
worksheets represents a table in your database. A database is a little more
stringent, however, in that when we create a new table, we have to specify
how many fields it will have, the names of those fields, as well as the data
types and lengths of those fields.

e Let’s start by creating a table with four fields named name, captain, gen-
der, and dorm. For data types, we’ll specify VARCHAR for name, with
a length of 100, BOOL for captain, ENUM for gender (writing *M’,’F’ for
Length/Values), and VARCHAR for dorm, with a length of 100. When we hit
the Go button, the table will be created, but we’ll also see the actual SQL
statement which was executed. SQL, by the way, stands for structured
query language.

14

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e Once we’ve created a table, we can insert values manually using php-
MyAdmin. The basic list of SQL statements which can be executed are
as follows:

— SELECT

INSERT

— UPDATE

— DELETE

So it looks like if we want to interact with our database via PHP, we’ll
need to use the INSERT command, as the phpMyAdmin interface did for
us, in order to add registrants. Let’s do this in register8.php:

<?
[/ 3kkokokokskskok ok skskok ok sk sksk ok ok skskok ok sksksk sk ok sksk sk sk ok ok sksk sk ok sksk sk sk ok sk sk sk ok skskok ok sksksk sk ok sk sk ok ok
* register8.php

Computer Science 50
David J. Malan

Implements a registration form for Frosh IMs.

Records registration in database.

Redirects user to froshims8.php upon error.

skskokok ok skokok ok ok skok o ok skokok o ok skokok o ok sksk ok ok sk o ok skokok sk ok skskok sk ok skok ok ok skokok sk ok skskokok ok skokok ok /

*
*
*
*
*
*
*

// validate submission

if ($_POST["name"] == "" || $_POST["gender"] == ""
|| $_POST["dorm"] == "")

{
$location = "http://cloud.csb0.net/"cs50/lectures/";
$location .= "8/src/froshims/froshims8.php";

header("Location: $location");
exit;

}

// connect to database
mysql_connect("localhost", "malan_lecture", "12345");
mysql_select_db("malan_lecture");

// scrub inputs
$name = mysql_real_escape_string($_POST["name"]);
if ($_POST["captain"])
$captain = 1;
else
$captain = 0;

15

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

$gender = mysql_real_escape_string($_POST["gender"]);
$dorm = mysql_real_escape_string($_POST["dorm"]);

// prepare query
$sql = "INSERT INTO registrants (name, captain, gender, dorm)
VALUES (’$name’, $captain, ’$gender’, ’$dorm’)";

// execute query
mysql_query($sql);

7>

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Frosh IMs</title>
</head>
<body>
You are registered! (Really.)
</body>
</html>

Using the functions mysql_connect () and mysql_select_db(), we con-
nect to our database server and select our actual database. php.net is
your friend, by the way. Just by Googling a function name, or even what
you think might be a function name in PHP, you’ll usually get the PHP
manual as your first result. Possibly the best feature of the manual is the
list of examples at the bottom.

e Before we insert data into our database directly from the $_POST super-
global, we need to sanitize it. Users can give us all sorts of invalid, ugly,
and even malicious data that might disrupt our database. Just ask Bobby
Tables’ school. To sanitize or escape user input so that it’s safe for MySQL,
we pass it to the function mysql_real_escape_string().

e Once we've sanitized the user’s input, we construct the SQL statement
in a variable called $sql. Within $sql, the actual data to be inserted is
between parentheses and enclosed in single quotes (if it’s a string).

e If we enter data in the registration form and click Submit, we can browse
our database on phpMyAdmin and see that the data was actually in-
serted in our database. What if we want to fetch that data and display
it in the browser? We can use the SELECT statement to do so, as in
registrants.php:

16

http://php.net/
http://xkcd.com/327/
http://xkcd.com/327/

Computer Science 50 Week 8 Wednesday: October 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

<?
// connect to database
mysql_connect("localhost", "malan_lecture", "12345");
mysql_select_db("malan_lecture");

// prepare query
$sql = "SELECT * FROM registrants";

// execute query
$result = mysql_query($sql);

>

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Frosh IMs</title>
</head>
<body>
<?
// iterate over results
while ($row = mysql_fetch_assoc($result))

{
print ($row["name"]);
print ("
");
}
>
</body>
</html>

The while loop is iteratively grabbing one row at a time from our SQL
query result until there are no rows left, in which case mysql_fetch_assoc()
will return false.

e All of this syntax will become useful to you as you compete Problem Set
7, for which you will be given a database to store registrants for your
stock-trading website. You’ll have to implement your own front end for
user registration as well as stock lookup and stock buying and selling.
The Problem Set 6 Big Board will be replaced with another that ranks
competitors by the worth of their (fake) stock portfolios!

17

	Announcements (0:00–5:00)
	Baby Steps

	Dynamic Web Development with PHP and SQL (5:00–75:00)
	A Command-Line Stock Lookup Application
	A Frosh IMs Registration Application
	E-mailing Data
	Storing Data

