
Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–7:00, 13:00–17:00) 2

2 Geek Humor (17:00–19:00) 2

3 The Information Superhighway (7:00–13:00) 3

4 Ajax (20:00–60:00) 3
4.1 Hiding and Showing HTML Elements 9
4.2 Anonymous Functions . 13
4.3 JSON . 15

5 Google Maps API (60:00–75:00) 17

1

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

1 Announcements (0:00–7:00, 13:00–17:00)

• This is CS 50.

• 0 new handouts.

• Only 3 lectures left! Better make the most of them!1

• Final Project Pre-Proposals are due by Monday at 11:00 AM. Realize
that they’re fairly lowkey—just a chance for you to touch base with your
teaching fellow and run your idea by him or her.

• A special seminar has been added to the list: Software Development for
the iPhone and iPod Touch. It will be taught by a representative from
Apple.

• Dinner with David tonight at 6 PM in Mather!

• Get a Shuttleboy Card today! Available in two editions—Quad or River—
this plastic card has the entire shuttle schedule for weekdays and weekends
as well as a visualization of the shuttle map itself.

• Coming soon: the CS 50 Store!

• Charles has been superseded on The Big Board. Others seem to have
found that they can trade stock volumes rather than actual stocks and
boost their net worth artificially. Charles was good enough to find that
because our system was storing shares as an int, it only allowed a max of
2 billion to be traded at a time. We’ve since changed that!

• Problem Set 8 is your last problem set ever for this course! Although you
may be tempted to skip it if you haven’t yet dropped a problem set, we do
encourage you to complete it anyway. In many ways, it’s the culmination
of all your hard work this semester and it introduces you to several new
concepts that will be useful to you for the Final Project and beyond.

• Don’t forget the Problem Set 5 Scavenger Hunt! We promise the prize will
be worth it. A few hints: the apple tree is where prefrosh go and behave
positively, the man scratching his chin in front of a Mac is associated with
CS 1.

2 Geek Humor (17:00–19:00)

• Check out George Hutchins for U.S. Congress 2010 and Bella De Soto’s
Website 12/18/05 for examples of great web design!

1I suggest wearing a silly hat to Sanders.

2

http://wiki.cs50.net/Seminars#Software_Development_for_the_iPhone_and_iPod_Touch
http://wiki.cs50.net/Seminars#Software_Development_for_the_iPhone_and_iPod_Touch
http://www.georgehutchins.com/
http://www.belladesoto.us/
http://www.belladesoto.us/

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

3 The Information Superhighway (7:00–13:00)

• Yes, I did just make that the title of this section.

• If we SSH into any server and run the command traceroute followed by
a website like cnn.com, we can see all the hops in between our current
server and the destination server.

• The first such hop will be a server with address 140.247.x.y. This is a
Harvard server, as Harvard owns all the IP addresses that begin with those
two numbers. All told, Harvard owns 65,536 IP addresses. Unfortunately,
we pale in comparison to MIT, who own all the IP addresses of the form
18.x.y.z. This means they have millions at their disposal.

• In David’s lecture example, we jumped from Harvard’s campus to some-
where in New Jersey, followed by Washington, D.C. and Atlanta. Realize
that you probably won’t be able to replicate this exact route if you run
this command again since packets can follow any number of different paths
from source to destination.

• If we see an entry like * * *, it means that particular router has blocked
information about itself.

• The overall time of the request will be tabulated in the far right column.
In class, David’s request took 27.457 milliseconds to reach cnn.com, which
was somewhere in the Atlanta area.

• What’s even more interesting is if we run traceroute on cnn.co.jp, the
Japanese version of CNN. Around steps 9 or 10, we see that the request
time jumps up significantly. If we examine the names of the servers at
these steps, we can infer that this was the jump across the Pacific Ocean.
Pretty amazing that it can be traversed in approximately 100 milliseconds.

• Check out this Warriors of the Net video, which is a half-fun, half-serious
look at how the internet really works.

4 Ajax (20:00–60:00)

• As we saw last time, it’s possible to have a form submit to itself using
PHP. In that way, server-side validation can be performed without risking
losing all of the information the user has inputted.

• Another way of implementing a seamless user interface is using Ajax. In
ajax1.html, we can see that entering a symbol and clicking Get Quote
causes an alert window to pop up with the stock price. We can see that
the URL has not changed at all, so we know the form hasn’t actually
submitted, yet we are retrieving information. Let’s take a look at the
source code to see how this is done:

3

http://www.warriorsofthe.net/movie.html

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

<!--

ajax1.html

Gets stock quote from quote1.php via Ajax, displaying result with alert().

Computer Science 50
David J. Malan

-->

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<script type="text/javascript">
// <![CDATA[

// an XMLHttpRequest
var xhr = null;

/*
* void
* quote()
*
* Gets a quote.
*/
function quote()
{

// instantiate XMLHttpRequest object
try
{

xhr = new XMLHttpRequest();
}
catch (e)
{

xhr = new ActiveXObject("Microsoft.XMLHTTP");
}

// handle old browsers
if (xhr == null)
{

alert("Ajax not supported by your browser!");
return;

4

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

}

// construct URL
var url = "quote1.php?symbol="

+ document.getElementById("symbol").value;

// get quote
xhr.onreadystatechange = handler;
xhr.open("GET", url, true);
xhr.send(null);

}

/*
* void
* handler()
*
* Handles the Ajax response.
*/
function handler()
{

// only handle loaded requests
if (xhr.readyState == 4)
{

// display response if possible
if (xhr.status == 200)

alert(xhr.responseText);
else

alert("Error with Ajax call!");
}

}

//]]>
</script>
<title></title>

</head>
<body>

<form action="" onsubmit="quote(); return false;">
Symbol: <input id="symbol" type="text" />

<input type="submit" value="Get Quote" />

</form>
</body>

</html>

5

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

Down at the bottom, we see that there’s very little XHTML that’s needed
to implement the actual form. One thing to notice is that the action
attribute has been left blank. In order for our page to validate, we need
to make sure this attribute actually exists, but we don’t have to put a real
filename there. Clearly if this attribute is blank, the form isn’t actually
going to submit anywhere. Instead, we have a JavaScript function called
quote(), specified in the onsubmit attribute, which is going to look up
the stock price. After this function executes, we’re going to return false
so that the form doesn’t actually submit.

• Ajax is a technology which allows browsers to make additional requests to
the server after the web page has already loaded. Unfortunately, browsers
never agreed upon how to implement Ajax, so we have to use some muddy
syntax in order to ensure cross-browser compatibility. First, we’re initial-
izing a global variable named xhr by trying to create a new XMLHttpRe-
quest object. Unfortunately, this won’t work in Internet Explorer because
Microsoft decided that their particular flavor of this object would be called
an ActiveXObject. For that reason, we use the try-catch syntax, which
attempts to execute the try block and only executes the catch block if the
try block fails for some reason.

• After we’ve initialized xhr, we check for null just in case the user is running
a browser that doesn’t support Ajax. Next we’re dynamically creating a
URL which we’re going to request from the server. In a GET variable named
symbol, we’re appending the value the user has entered into the text box.
We are accessing this value by invoking a method called getElementById,
which, as you might’ve guessed, searches for an HTML element whose
id attribute we specify. In this case, we’ve given the text box an id of
symbol, so that’s what we’re searching for.

• The three lines at the bottom of quote() are the ones which actually
retrieve the stock quote. First we’re telling xhr that once its done making
its request, call a function named handler() that we will write ourselves.
The last two lines actually open a connection to the server and send the
data. If you wanted to use the POST method, you would specify POST as
the first argument to open() and you would pass the actual data as the
argument to send(), rather than null.

• So let’s actually see what this URL will return if we access it directly. If we
navigate to quote1.php?symbol=GOOG, we get back nothing but a stock
quote—no HTML markup, even. It is our handler() function which will
be manipulating this directly.

• Within the handler() function, we are checking two properties of the xhr
object: readyState and status. First, we check readyState to find if
the request has been sent successfully and second, we check status, to
see if the server has returned a response of OK. If both of those checks

6

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

are passed, then we access the responseText of the object and display it
via an alert window.

• Slightly more sophisticated than an alert window would be to embed the
response in the actual XHTML of the webpage. Check out ajax2.html:

<!--

ajax2.html

Gets stock quote from quote1.php via Ajax, embedding result in page itself.

Computer Science 50
David J. Malan

-->

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<script type="text/javascript">
// <![CDATA[

// an XMLHttpRequest
var xhr = null;

/*
* void
* quote()
*
* Gets a quote.
*/
function quote()
{

// instantiate XMLHttpRequest object
try
{

xhr = new XMLHttpRequest();
}
catch (e)
{

xhr = new ActiveXObject("Microsoft.XMLHTTP");
}

7

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

// handle old browsers
if (xhr == null)
{

alert("Ajax not supported by your browser!");
return;

}

// construct URL
var url = "quote1.php?symbol="

+ document.getElementById("symbol").value;

// get quote
xhr.onreadystatechange = handler;
xhr.open("GET", url, true);
xhr.send(null);

}

/*
* void
* handler()
*
* Handles the Ajax response.
*/
function handler()
{

// only handle loaded requests
if (xhr.readyState == 4)
{

// embed respose in page if possible
if (xhr.status == 200)

document.getElementById("price").innerHTML = xhr.responseText;
else

alert("Error with Ajax call!");
}

}

//]]>
</script>
<title></title>

</head>
<body>

<form action="" onsubmit="quote(); return false;">
Symbol: <input id="symbol" type="text" />

8

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

Price: to be determined

<input type="submit" value="Get Quote" />

</form>

</body>
</html>

Where the stock price will go, we have an element of type span. This
is similar to a div in that we can put almost anything inside it, but a
div, being a block-level element, takes up the whole width of the window
whereas a span, being an in-line element, does not.

• In this version, when we click Get Quote, the text “to be determined”
gets replaced by the actual stock quote. Interestingly, even after the stock
quote is displaced, if we view the web page’s source, we see that the span
still contains the text “to be determined.” JavaScript can change what’s
displayed by the browser, but it doesn’t change what was originally sent
by the server.

• The only difference between the JavaScript in ajax2.html and that in
ajax1.html is the handler() function. Now when the Ajax request re-
turns successfully, we’re changing the innerHTML property of the price
element rather than popping up an alert window. innerHTML initially
holds the text “to be determined” (within a b tag) which we will clobber
with the stock price we just looked up.

4.1 Hiding and Showing HTML Elements

• Ajax stands for asynchronous JavaScript and XML. What these buzzwords
really mean is that JavaScript is being used to retrieve data that the rest
of the page isn’t waiting on—hence the asynchronicity.

• While data is being retrieved asynchronously, it’s often a good idea to
convey to the user, via a progress indicator, that the data is on its way.
A quick Google search for Ajax progress bars will yield sites like this that
allow you to create your own progress bar.

• Recall that quote1.php is a simple ripoff of distribution code from Prob-
lem Set 7 which dynamically generates a URL with a stock symbol ap-
pended then hits that URL and parses the stock quote from Yahoo’s re-
sponse. Other than this file, we’re actually not using any PHP. So far, all
of our Ajax files have been nothing but XHTML and JavaScript.

• Let’s take a look at ajax3.html:

9

http://ajaxload.info/

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

<!--

ajax3.html

Gets stock quote (plus day’s low and high) from quote2.php via Ajax,
embedding result in page itself after indicating progress with an
animated GIF.

Computer Science 50
David J. Malan

-->

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<script type="text/javascript">
// <![CDATA[

// an XMLHttpRequest
var xhr = null;

/*
* void
* quote()
*
* Gets a quote.
*/
function quote()
{

// instantiate XMLHttpRequest object
try
{

xhr = new XMLHttpRequest();
}
catch (e)
{

xhr = new ActiveXObject("Microsoft.XMLHTTP");
}

// handle old browsers
if (xhr == null)
{

10

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

alert("Ajax not supported by your browser!");
return;

}

// construct URL
var url = "quote2.php?symbol="

+ document.getElementById("symbol").value;

// show progress
document.getElementById("progress").style.display = "block";

// get quote
xhr.onreadystatechange = handler;
xhr.open("GET", url, true);
xhr.send(null);

}

/*
* void
* handler()
*
* Handles the Ajax response.
*/
function handler()
{

// only handle requests in "loaded" state
if (xhr.readyState == 4)
{

// hide progress
document.getElementById("progress").style.display = "none";

// embed response in page if possible
if (xhr.status == 200)

document.getElementById("quote").innerHTML = xhr.responseText;
else

alert("Error with Ajax call!");
}

}

//]]>
</script>
<title></title>

</head>
<body>

11

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

<form action="" onsubmit="quote(); return false;">
Symbol: <input id="symbol" type="text" />

<div id="progress" style="display: none;">

</div>
<div id="quote"></div>

<input type="submit" value="Get Quote" />

</form>
</body>

</html>

In the actual XHTML source, we see that the the progress bar GIF is actu-
ally already embedded. But because the div which contains it has its CSS
property display set to none, it won’t actually be visible when the page is
first loaded. If we examine the JavaScript, we see that it’s almost identical
to ajax2.html, except for two lines, one in the quote function which sets
the display property to block, and one in the handler function which
sets this display property back to none.

• Realize that the GIF animation is not beginning when we click Get Quote.
The animation is actually built into the GIF, which has been in the back-
ground the whole time. We simply make it visible when we click Get
Quote.

• We can see this same show/hide functionality in HarvardEvents. When
you click on any given event, there’s no request being made to the server.
Rather, the paragraph description was downloaded when the page first
loaded and clicking simply reveals the description by changing its display
property to block.

• We’re also displaying more than just the stock price at this point. Let’s
take a look at how we do that in quote2.php:

<?php

/**
* quote2.php
*
* Outputs price, low, and high of given symbol as text/html, after
* inserting an artificial delay.
*
* Computer Science 50
* David J. Malan

12

http://events.college.harvard.edu/

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

*/

// pretend server is slow
sleep(5);

// try to get quote
$handle = @fopen("http://download.finance.yahoo.com/d/quotes.csv?" .

"s={$_GET[’symbol’]}&f=e1l1hg", "r");
if ($handle !== FALSE)
{

$data = fgetcsv($handle);
if ($data !== FALSE && $data[0] == "N/A")
{

print("Price: {$data[1]}");
print("
");
print("High: {$data[2]}");
print("
");
print("Low: {$data[3]}");

}
fclose($handle);

}
?>

You can see that instead of simply returning a single number, quote2.php
is actually spitting out some XHTML. This XHTML is what we will dy-
namically insert into ajax3.html when the Ajax call returns successfully.

4.2 Anonymous Functions

• Having a function named handler in our previous examples feels a little
sloppy because we’re only using this function once. As an alternative, we
might define it as an anonymous function and assign it directly as the
state change event handler for our Ajax request, as we do in ajax4.html:

<!--

ajax4.html

Gets stock quote from quote1.php via Ajax, displaying result with alert().
Implements handler as an anonymous function.

Computer Science 50
David J. Malan

-->

13

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<script type="text/javascript">
// <![CDATA[

// an XMLHttpRequest
var xhr = null;

/*
* void
* quote()
*
* Gets a quote.
*/
function quote()
{

// instantiate XMLHttpRequest object
try
{

xhr = new XMLHttpRequest();
}
catch (e)
{

xhr = new ActiveXObject("Microsoft.XMLHTTP");
}

// handle old browsers
if (xhr == null)
{

alert("Ajax not supported by your browser!");
return;

}

// construct URL
var url = "quote1.php?symbol="

+ document.getElementById("symbol").value;

// get quote
xhr.onreadystatechange = function () {

// only handle loaded requests
if (xhr.readyState == 4)

14

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

{
// display response if possible
if (xhr.status == 200)

alert(xhr.responseText);
else

alert("Error with Ajax call!");
}

};
xhr.open("GET", url, true);
xhr.send(null);

}

//]]>
</script>
<title></title>

</head>
<body>

<form action="" onsubmit="quote(); return false;">
Symbol: <input id="symbol" type="text" />

<input type="submit" value="Get Quote" />

</form>
</body>

</html>

This way of structuring our code certainly has its appeal as its more
compact and yet still readable. The code within the function is actually
identical to what it was in handler().

4.3 JSON

• In ajax5.html, we have three span elements with unique id’s, each of
which will be filled with corresponding data from our Ajax request.

• Now that we have three different placeholders, we can’t simply insert a
chunk of XHTML into our web page. Instead, we’ll need to be able to
parse the Ajax response. The data structure that will make this possible
is familiar from Problem Set 6: a hash table. In quote3.php, we’ll be
creating a hash table—an associative array—with values corresponding
to the price, the high, and the low for a given stock symbol. Then we’re
going to encode this as a JavaScript object using JavaScript object notation
(JSON):

<?php

/**

15

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

* quote3.php
*
* Outputs price, low, and high of given symbol as JSON.
*
* Computer Science 50
* David J. Malan
*/

// try to get quote
$quote = array();
$handle = @fopen("http://download.finance.yahoo.com/d/quotes.csv?" .

"s={$_GET[’symbol’]}&f=e1l1hg", "r");
if ($handle !== FALSE)
{

$data = fgetcsv($handle);
if ($data !== FALSE && $data[0] == "N/A")
{

$quote["price"] = $data[1];
$quote["high"] = $data[2];
$quote["low"] = $data[3];

}
fclose($handle);

}
header("Content-type: text/javascript");
print(json_encode($quote));

?>

Once we do a quick sanity check on the return values from Yahoo’s server,
we create an associative array with keys of price, high, and low. Passing
this array to the json_encode() function will create a JavaScript object
with properties of the same names. The syntax for this object might look
something like the following:

{"price":"566.76","high":"568.78","low":"562.00"}

In ajax5.html we access these values after evaluating the Ajax response
text as JSON:

var quote = eval("(" + xhr.responseText + ")");
document.getElementById("price").innerHTML = quote.price;
document.getElementById("high").innerHTML = quote.high;
document.getElementById("low").innerHTML = quote.low;

The eval function takes the JSON and creates a corresponding object in
memory.

16

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

• Kayak is an example of a site which makes extensive use of Ajax to create
a dynamically updated interface. When you search for a flight or hotel on
Kayak, the results appear to be added one by one, the lowest price at the
top. What’s most likely going on behind the scenes is that each of these
prices is being retrieved by an Ajax request, a response is being evaluated
as JavaScript, and the appropriate content is being inserted into the DOM
where it belongs. Applying the filters doesn’t change the URL, either, so
it would seem that JavaScript is being used to sort the results.

5 Google Maps API (60:00–75:00)

• Using the Google Maps API is as easy as providing an e-mail address
and a domain where you will use it and embedding in your website the
registration key they give you. After that, the entirety of their code base
is available to you. Feel free to browse the API Reference to see just how
much they offer.

• map1.html isn’t very impressive, but it does demonstrate the very basics
of embedding a Google Map in a webpage:2

<!--

map1.html

Demonstrates a "hello, world" of maps.

Computer Science 50
David J. Malan

-->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<script src="http://maps.google.com/maps?

file=api&v=2&key=ABQIAAAA8igYd929VTmOEMLNjNyP1xQBp
XogqfcSB7goBPOHTPn2IeSNTRQdD9mEVL94XCoVb0q6KdbS4ouIDA"

type="text/javascript"></script>
<script type="text/javascript">
//<![CDATA[

function load()

2The src attribute of the first JavaScript link has been spread across multiple lines.

17

http://www.kayak.com/
http://code.google.com/apis/maps/documentation/reference.html

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

{
if (GBrowserIsCompatible())
{

var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

}
}

//]]>
</script>
<title></title>

</head>
<body onload="load()" onunload="GUnload()">
<div id="map" style="width: 800px; height: 500px"></div>

</body>
</html>

Two new attributes for the body element are onload and onunload. What
we’re telling the browser to do is to call our custom load function when
the page first renders and to call Google’s GUnload function when the page
is “unloaded,” for example, when the user navigates away from the page.

• The entire content of the page is a single div. If the load function isn’t
called, then there’s actually no content on the page. Within the load
function, we first check if the user’s browser is supported by Google Maps.
Once we’ve passed this check, a single line of code, instantiating a GMap2
object, is all it takes to create a Google Map. To its constructor, we simply
pass the HTML element in which we want to insert the map, in this case
the HTML element with the id of map.

• Because map is now a JavaScript object, it has not only properties associ-
ated with it, but also methods, one of which is setCenter. We can call
this method by using the dot notation just as we did before when accessing
the properties of quote. The setCenter method takes two arguments: a
latitude/longitude point and a zoom level. We can tweak either to see
where it takes us.

• You’ll notice in this basic example, we haven’t enabled zoom control.
map3.html takes care of this, as well as numerous other controls, with
a few more lines of code:

function load()
{

if (GBrowserIsCompatible())
{

// instantiate map

18

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

var map = new GMap2(document.getElementById("map"));

// center map on Science Center
map.setCenter(new GLatLng(42.376649, -71.115789), 13);

// add control using a local variable
var typeControl = new GMapTypeControl();
map.addControl(typeControl);

// add another control without using a local variable
map.addControl(new GLargeMapControl());

// enable scroll wheel and smooth zooming
map.enableScrollWheelZoom();
map.enableContinuousZoom();

}
}

These lines of code are pretty easy to pick up just from reading the manual.

• Another easy feature to add to our map is the familiar red markers which,
when clicked, pop up an information window. We do this in map4.html
using a function called createMarker:

var map;

function load()
{

if (GBrowserIsCompatible())
{

// instantiate map
map = new GMap2(document.getElementById("map"));

// prepare point
var point = new GLatLng(42.376649, -71.115789);

// center map on Science Center
map.setCenter(point, 13);

// mark Science Center
createMarker(point);

}
}

function createMarker(p)
{

19

Computer Science 50
Fall 2009
Scribe Notes

Week 9 Wednesday: November 4, 2009
Andrew Sellergren

var marker = new GMarker(p);
map.addOverlay(marker);

// associate info window with marker
GEvent.addListener(marker, "click", function() {

// prepare XHTML
var xhtml = "Science Center";
xhtml += "

";
xhtml += "<a href=’http://en.wikipedia.org/wiki/Harvard_Science_Center’

target=’_blank’>";
xhtml += "http://en.wikipedia.org/wiki/Harvard_Science_Center";
xhtml += "";

// open info window
map.openInfoWindowHtml(p, xhtml);

});
}

Now, we save the latitude/longitude (GLatLng) object we create as a vari-
able named point, which we pass to createMarker. Within createMarker,
we add a GMarker object to the map and also add an event listener to it
that will handle a user’s click. This listener creates some XHTML on the
fly and passes it to the openInfoWindow method. Know that these lines
of code will only be executed when the user clicks the marker, not when
the page first loads.

• Take a look at map5.html, which combines the Ajax request we used
previously in order to dynamically display the stock price of Google within
an information window.

20

	Announcements (0:00–7:00, 13:00–17:00)
	Geek Humor (17:00–19:00)
	The Information Superhighway (7:00–13:00)
	Ajax (20:00–60:00)
	Hiding and Showing HTML Elements
	Anonymous Functions
	JSON

	Google Maps API (60:00–75:00)

