(ot)
I'eh Computer Sci-

ence 50 Jearnz you
about intertubes in
teh cloudz. David J.
Malan will pwn u

ftw so watch out!
_

(S 50 Walkthrough 6

Problem Set 6: Mispellings

Marta Bralic

Slides courtesy of: Keito Uchiyama

Problem Set 6: Mispellings

* Topics:
— More data structures, more pointers
— More File 1/0

* You implement:
— A dictionary for a very fast spell checker

The Distribution Code

texts —a symlink

speller.c — a spellchecker

dictionary.h — the header file

dictionary.c — a dictionary implementation
Makefile

guestions.txt

What to implement

load() — loads a dictionary into memory
size() — gets the size of the dictionary
unload() — unloads a dictionary from memory

check() — checks if a given word is in the
dictionary

Your options

* Slow but simple: Linear search every time
— don’t do this!

 Hash tables
* Tries

Keys

Hash Tables

Indexes

John Smith

Key-value pairs
(records)

1’__._———>

Lisa Smith | +1-555-8976

Lisa Smith

John Smith | +1-555-1234

Sam Doe

ol ||
873 | l
874| |

Sandra Dee |+1-555-9655

Sandra Dee

998 |
999

Sam Doe +1-555-5030

Image courtesy User:Davidgothberg and User:Helix84,

Wikimedia Commons

Hash Tables - Operations

Initializing our hash table
Adding dictionary words
Checking words

Unloading words

Initializing

//Here's how our node 1is defined
typedef struct node {
char word[LENGTH + 1];
struct node *next;
} node;

//We have our main directory of node

//pointers
node *myarray[ARRAYSIZE];

// for each element 1 in myarray:
// myarray[i] = NULL

Hash Tables — a Hash Function

function myHashFunction(string):
int hashresult

foreach character in string:
hashresult += character - 65

return hashresult % ARRAYSIZE

Loading Dictionary Words

e fopen(dict) same as in pset5
* while Ifeof(dict)
— create nodes for them
— put these nodes in the hash table

Creating Nodes

* malloc space for new node (node *newnode)

— store each letter i of the word in that node
 fgetc(dptr) is that letter
* newnode->word][i] is where letters should be stored
* until you reach ‘\n’

— newnode->word([j] = ‘\0’ at this point

Put Node in Hash Table

* hash(newnode->word)

— go to that place in array (array[hashresult])
* if nothing is there (NULL)

— put a pointer to your node that you just malloced there
— set newnode->next to NULL

* else
— set newnode->next to the pointer currently there
— put your pointer there

 when while loop exits, fclose(dict)

Size

Really easy if you’ve kept a counter that you
increment every time you load a word.

Check

e convert each letter of word tolower

* hash word and go to that place in array

— temporarily store the ptr you find there (currnode)
e while (currnode != NULL)

— compare currnode->word to word
» how?
» if match, return true

— if not, move to currnode->next

* when you exit this while loop, return false

Unload

* [terate through each node, like in check
— free the node
— free the spot in the array that starts the linked list
— return true

* run valgrind to ensure no leaks!

Tries — A struct

//Here's an example of what each node
//1in our struct will look like
typedef struct node {

bool is word;

struct node *children[27];
} node;

//We have our root node
node *root;

Tries - Operations

Initializing our root node
Adding words
Checking words

Unloading words

Tips

e Start with a small dictionary and small text file
(speller [dict] file)

* Mapping out data structures on paper and on
screen

* Using gdb

~

Teh Computer Sci-
ence 50 learnz you
about intertubes in
teh cloudz. David J.

Malan will pwn u

ftw so watch out!

(S 50 Walkthrough 6

Problem Set 6: Mispellings

Marta Bralic

