
Section Notes

Week 10

CS50 — Fall, 2008

Week of November 23, 2008

Contents

1 JavaScript 1
1.1 Syntax . 2

1.1.1 Variables . 2
1.1.2 Arrays . 2
1.1.3 Operators . 3
1.1.4 Statements . 3
1.1.5 Functions . 4
1.1.6 Objects . 5

1.2 The DOM . 5
1.2.1 DOM Properties . 6
1.2.2 DOM Methods . 6

2 AJAX 7
2.1 The XMLHttpRequest Class . 7

2.1.1 Attributes . 7
2.1.2 Methods . 8

2.2 Validating a Password . 8
2.3 Validating a Username . 12

3 Google Maps 13
3.1 Including the API . 13
3.2 Setting Up . 13
3.3 Creating a Map . 13
3.4 Getting Dynamic . 14
3.5 Events . 14
3.6 Controls . 15
3.7 Overlays . 16
3.8 Services . 16

3.8.1 AJAX Requests and XML Parsing . 16
3.8.2 Geocoding . 17

1 JavaScript

JavaScript is a scripting language that developed alongside HTML during the browser wars between Microsoft
Internet Explorer and Netscape Navigator. Though its name implies some relationship to Java, the Java
in JavaScript reflects only the business relationship between Sun and Netscape; Sun owned the trademark

1

malan
Rectangle

while Netscape did most of the development on the language. It is different from the other web-related
programming languages you’ve seen so far in that it is run client-side, which means all code is executed
on the local machine of the user, whereas PHP is processed by the web server. This has a few important
implications. First, whereas users cannot disable your PHP pages to alter their functionality, most browsers
in use today have many options to restrict what type of JavaScript can be executed. Scripts that create
popup windows containing ads without asking the user are commonly blocked in this way. Furthermore,
since JavaScript is interpreted by the user’s web browser, the source code must be fully available to the
browser and by extension to the user. It’s therefore extremely unsafe to hardcode any sensitive information
into a piece of JavaScript.

The other important property of JavaScript is that it is interpreted, not compiled. In other words, you
don’t compile a piece of JavaScript any more than you’d compile a PHP page. Whatever web browser is
accessing a site containing JavaScript will dynamically execute the code according to its own interpretation
of the JavaScript standard. Since JavaScript is designed to fail gracefully, you may write (and probably have
visited many sites with) JavaScript that contains errors without ever knowing it—unlike even PHP, your
page will not fail to render if it has a JavaScript syntax error. Instead, the part of the site dependent on
JavaScript will simply stop working, or even more insidiously, it may continue to work in an unexpected
way with warnings flagged by the interpreter. A debugging tool like Firebug is critical for writing clean,
predictable JavaScript.

1.1 Syntax

1.1.1 Variables

JavaScript’s syntax is very similar to C’s, though it also bears resemblance to PHP in many aspects. Variables
in JavaScript are declared by assigning to them:

age = 25;

This creates a global variable named age that will be set to 25. Note the lack of a type specifier; like PHP,
JavaScript is loosely typed, meaning you don’t need to tell it explicitly that any given variable is an int or
a string.

The variable created in the above example will be global, just like a variable declared outside of any
function in C. This is not always what we want; a list iterator, for example, should not be visible outside
the function using it. JavaScript therefore provides the var keyword.

var i = 0;

This declares a local variable named i. Even if there is already a global variable named i, any code in
the same function following this declaration will use the local version. In general, you should declare most
variables local unless they need to be global; this will help you avoid running into name conflicts later.

1.1.2 Arrays

A JavaScript array may be declared by setting a variable equal to some expression in brackets.

var array = [];
var oneThroughFive = [1, 2, 3, 4, 5];

Arrays in JavaScript are dynamically resized as necessary, so there’s no need to specify any size. If you do
try to reference an “out of bounds” index, such as one you haven’t initialized yet, its type will be considered
undefined. JavaScript arrays can contain any type of value, even heterogeneously within the same array, so

var array = [1, "two", function() { return 3 }, 4.001];

declares a valid array in JavaScript.

2

1.1.3 Operators

JavaScript supports essentially the same operators as C. However, there are a few important differences.

• +
The + operator performs addition as you’d expect, but it can also concatenate strings like . in Perl or
PHP.

string1 = "See";
string2 = "Spot";
string3 = "run";
document.write(string1 + " " + string2 + " " + string3);

This code snippet prints “See Spot run” to the page.

• ==
JavaScript has the same =/== semantics as C, but == can also be used to test equivalence of strings.
Since JavaScript is loosely typed, == will attempt to perform an appropriate conversion so that, for
example,

"1" == 1

evaluates to true. It also provides === for comparing both the value and the type of a variable. "1"
=== 1 will evaluate to false.

• typeof
This operator returns the type of its operand, which will be number, boolean, string, object,
function, null, or undefined. In JavaScript, null means “having no particular value” and is the
type of the empty object, whereas undefined is the value of any variable or array index you haven’t
initialized yet. So this code

dogName = "Spot";
document.write(typeof dogName);

will write “string” to the page.

1.1.4 Statements

Like C, JavaScript provides the if-else conditional statement as well as for, while, and do-while loops.
JavaScript also has a switch statement, but it is more versatile than C’s. Whereas C’s case labels can
contain only integer and character literals, JavaScript also supports floating-point and string literals in case
labels. So

switch (strangeVar)
{
case 5:
document.write("5");
break;

case 3.14:
document.write("pi");
break;

case "hello":
document.write("greeting");
break;

3

default:
document.write("unknown");
break;

}

is valid JavaScript. Case labels still may contain only literals; you cannot use another variable or a conditional
expression like x < 26 within one.

• for...in
JavaScript provides a statement similar to PHP’s foreach to iterate through an array or object with
many elements or properties.

var weekArray = [’Monday’, ’Tuesday’, ’Wednesday’];
for (var day in weekArray)

document.write(day + " ");

This code snippet will print “Monday Tuesday Wednesday ”.

1.1.5 Functions

JavaScript really starts to get interesting when you consider functions. JavaScript functions are first-class
objects, which mean they have the same status as any variable; they can be created dynamically and passed
to or returned from other functions.

This comes most in handy when defining what are known as event handlers. JavaScript lets you associate
functions with specific actions taken by the user or the user’s browser, which are called events.1

<input type="text" onfocus="alert(’Enter your name’);"/>

would create a textbox that pops up instructions when you give it focus (move the cursor inside it). Likewise,
you could define some function

function alertName()
{

alert("Enter your name");
}

and then have the input call that:

<input type="text" onfocus="alertName();"/>

Event handlers can see additional information about the circumstances under which they were called. This
information is contained in the optional event parameter passed to event handlers.

function alertName(event)
{

var triggeringObject = event.srcElement;
alert("You clicked on the " + triggeringObject.value + " button");

}
...
<input type="button" value="Click Me" onclick="alertName(event);"/>
<input type="button" value="Don’t Click Me" onclick="alertName(event);"/>

This script would enable you to see which button was clicked even though both call the same event handler.
1For a full list of events, see http://www.w3.org/TR/DOM-Level-3-Events/events.html#Events-EventTypes-complete.

4

1.1.6 Objects

You can think of an object in JavaScript as a container, sort of like a struct. Objects in JavaScript can
contain both variables, which are usually called properties, and functions, which are then called methods.
Creating an object is as simple as including the line

car = new Object();

You then have an object called car that you can modify however you want.

car.color = "red";
car["year"] = 2005;
car.makeSound = vroom;

That last line would enable you to call car.makeSound() and have the function vroom() execute, assuming
it was defined at some point already. Notice the two different syntax options for accessing members of
an object. It’s often useful to be able to create a new object with certain properties already filled out on
demand. A function called a constructor, written like this:

function student(name, class, id)
{

this.name = name;
this.class = class;
this.id = id;

}

would create a new object with properties name, class, and id corresponding to the ones passed to the
function. A new student could then be created with

johnHarvard = new student("John Harvard", 2011, 12345678);

You’ll see many objects created this way when we talk about AJAX and Google Maps.

1.2 The DOM

Objects in JavaScript can contain anything, including other objects. One particularly important hierarchy of
objects like this is the Document Object Model. The DOM defines a standard way of treating the elements
that make up an HTML page as objects in JavaScript, enabling us to manipulate them programmatically.
Here’s a simplistic view of the HTML DOM.2

2http://www.w3schools.com/HTMLDOM/htmltree.gif

5

Most DOM objects define a similar group of properties and methods with which it’s useful to be familiar.

1.2.1 DOM Properties

• innerHTML
The inner text value of some HTML element. For example, the innerHTML of the <i> tag in <i>hello
world</i> is hello world.

• nodeName
The name of an element or attribute. The nodeName of the tag is
img, and the nodeName of its src attribute is src.

• nodeValue
The value of an attribute. The nodeValue of the src attribute above is the string helloworld.jpg.

• parentNode
A reference to a node’s parent.

• childNodes
An array containing a node’s children.

• attributes
An array containing the attributes of a node.

• style
A special object representing the style of a node. The style object itself has properties representing the
various CSS style attributes an element can possess. For example, [node].style.backgroundColor
= "red" is equivalent to styling the node with [node] { background-color: red; } in CSS.

1.2.2 DOM Methods

• getElementById(id)
Gets the element with a given ID (specified with the id attribute) under this node.

• getElementsByTagName(name)
Get all elements under this node with the given tag name.

• appendChild(node)
Add the given node to the children of this node.

• removeChild(node)
Remove the given node from the children of this node.

Our root for accessing DOM nodes is usually the document object, which is globally accessible from any
function on a page. The document object represents the entire page and everything contained within it.
Therefore, to find the DIV with the ID purpleDiv and make its background purple, we could do something
like this:

document.getElementById("purpleDiv").style.backgroundColor = "purple";

When this power to manipulate the document is combined with JavaScript events and handlers, a page can
become incredibly dynamic in itself without ever asking the server for information.

6

<html>
<script type="text/javascript">

function turnPurple()
{

document.getElementById("purpleDiv").style.backgroundColor = "purple";
}

</script>
<body>

<div id="purpleDiv">Turn me purple!</div>
<input type="button" value="Do it" onclick="turnPurple();"/>

</body>
</html>

This page, for example, implements a button that can turn a neighboring DIV purple with a single click.
But this example doesn’t do justice to the vast changes that one can effect in a page through the DOM.
A page can be entirely reconstructed from the bottom up by adding and removing nodes with the desired
content.

2 AJAX

One of the problems web applications have traditionally faced is the issue of dynamically changing content.
HTTP is a connectionless protocol, meaning that you do not maintain a continuous connection to a website
when you visit it. In order to allocate bandwidth and server resources most efficiently, HTTP was designed
to allow clients to connect, download enough data for one page, and then disconnect until the next request.
This paradigm makes many desirable effects impossible. For example, it would be impossible to implement
an effective chat room via HTTP because no one could see what anyone else was saying without hitting
refresh; as such, we have a plethora of web-based bulletin boards but almost no web-based chat rooms (and
those that exist are usually Java applets, bypassing HTTP entirely).

AJAX, which stands for Asynchronous JavaScript and XML, solves this problem by enabling client-side
scripts to make HTTP queries independent of the page in which they are contained (hence the ”asynchronous”
part). The advent of AJAX precipitated large shifts in what functionality a web site could implement without
severely hurting the performance of its host or inconveniencing the user past the point where the functionality
would be worth it. Before AJAX, Google’s built-in autocomplete, for example, would have required Google
to transmit enormous amounts of data in response to every request for its homepage (so the autocompletion
could be calculated clientside) or the user to click a submission button every time he wanted suggestions.
AJAX allows this feature to be implemented with extremely low overhead (all of index.html need not be
transmitted every time the user adds a new character to his search term, nor must Google provide its
dictionary to the browser) and total transparency to the user (no button to click).

At the core of any AJAX query is the XMLHttpRequest object. This object provides functionality to
send data to a server, await a response in one of two forms, and take action when a response is received.

2.1 The XMLHttpRequest Class

2.1.1 Attributes

• readyState
A code that represents the status of the XMLHttpRequest. Possible values include the following:
0 - not initialized
1 - connection established
2 - request received
3 - answer in progress
4 - done

7

• status
The HTTP status of the request. HTTP statuses are things like 404 for page not found, 403 for access
denied, and 200 for request OK.

• responseText
One of two properties that can hold data returned from a request. responseText simply holds the
response as a string of characters.

• responseXml
The other property that holds returned data. responseXml can contain structured XML data which
can then be accessed via DOM just like the elements of an HTML page.

• onreadystatechange
The function to call when the readystatechange event is dispatched. In other words, this function
will be called when a request goes from “in progress” to “done” (or between any other pair of states,
but this is the one we really care about).

2.1.2 Methods

• open(mode, url, async)
This function opens a connection to a server in preparation for making a request. The mode parameter
specifies whether parameters of the request should be submitted via method GET (in the query string)
or method POST (encoded in the HTTP request itself). The url is the location of the file to request.
The final boolean async parameter specifies whether the request is to be asynchronous with respect
to the browser. That is, a value of true executes a standard asynchronous request that will not halt
execution of any other scripts on the page. A value of false will force the browser to wait for a
response before it does anything else. The vast majority of the time, this should be true.

Note that open can optionally take username and password as extra parameters if the page being
requested requires authentication of some kind.

• send(string)
This function sends data for a request. If you are using method GET, the parameters sent will
be part of the query string at the end of the url argument to open(), so this should always be
called as send(null). If you are using method POST, key/value pairs can be sent with a call like
send("param1=hello¶m2=world").

That might seem like a lot to absorb when presented in such a disjointed way, so let’s dive into some examples
of how AJAX might be used.

2.2 Validating a Password

If you’ve signed up for an account with Google (GMail, perhaps?), you’ve probably seen the nifty password
validation widget they use to tell you how strong your proposed password is. Whereas most sites requiring
registration require you to go through the annoying process of typing a username and password and clicking
submit only to find that the username is taken or the password is invalid, often deleting half of your entries
in other fields in the process, this system allows you to square away everything in the form the first time.
But how?

Let’s start by writing our JavaScript.

<script type="text/javascript">
// <![CDATA[

// an XMLHttpRequest
var xhr = null;

8

The first thing we do is to declare our XMLHttpRequest object. It starts off null, since we don’t need it for
anything until it comes time to actually validate a password.

/*
* void
* requestPasswordCheck()
*
* Sends an AJAX request for a password check.
*/
function requestPasswordCheck()
{

// instantiate XMLHttpRequest object
try
{

xhr = new XMLHttpRequest();
}
catch (e)
{

xhr = new ActiveXObject("Microsoft.XMLHTTP");
}

// handle old browsers
if (xhr == null)
{

alert("Ajax not supported by your browser!");
return;

}

// construct URL
var url = "checkPass.php?";
url += "password=" + document.getElementById("password").value;
url += "&password2=" + document.getElementById("password2").value;

// get quote
xhr.onreadystatechange = handler;
xhr.open("GET", url, true);
xhr.send(null);

}

Next comes the requestPasswordCheck() function. Take a look at that first pair of blocks, beginning
with try and catch. This is something you haven’t seen before because C does not support it, but most
modern programming languages do. More recent languages have concepts of error handling and exceptions,
messages that are sent to your program when something goes wrong. This allows us to handle something like
dereferencing a null pointer more elegantly than crashing the program and leaving an unsightly core dump
in its working directory. The try-catch block here basically says “attempt to create an XMLHttpRequest; if
something went wrong (e.g., we were using IE), try to create a Microsoft.XMLHTTP ActiveX object instead.”
If that doesn’t work either, we have no choice but to give up. We then construct the URL to which we plan
to make our request. Since we’re using method GET, the URL consists of the actual location of the page we
want to access followed by a query string within which we’ll pass our prospective password as data.3 The

3Note that this is extremely insecure! It’s never a good idea to transmit a password over the internet as plaintext lest
someone be listening. Method POST wouldn’t work either; it moves the password out of the querystring into the body of the
HTTP request, but it would still be plaintext. In the real world, an operation like this would be implemented over SSL.

9

next few lines are the most critical. We set the onreadystatechange attribute to handler (no parentheses!)
so that our object knows to call handler() when the request is completed. We then open the connection to
the server and make the request.

/*
* void
* handler()
*
* Handles the Ajax response.
*/
function handler()
{

// only handle loaded requests
if (xhr && xhr.readyState == 4)
{

if (xhr.status == 200)
{

var response = xhr.responseXML;
var resultDiv = document.getElementById("result");
if (response.getElementsByTagName("response")[0].attributes

.getNamedItem("valid").nodeValue == "false")
resultDiv.style.color = "red";

else
resultDiv.style.color = "green";

resultDiv.style.fontWeight = "bold";
resultDiv.innerHTML = response.getElementsByTagName("response")[0]

.childNodes[0].nodeValue;
}

}
}

Let’s move on to our handler. When the request experiences any change of state, including the moment at
which it’s made, handler() will be called. Since our xhr object is global, handler() has full access to all
its properties and methods. We’re not interested in doing anything until the request is complete (status
= 4), so that’s the only time code is actually run by this function.4 If the request succeeded, i.e., the
HTTP status returned was 200 OK, we make use of the data provided to inform the user of their password’s
strength. Otherwise we’ll refrain from saying anything at all—the password will just have to be validated
on submission. This is a case where displaying “AJAX error!” would probably not be terribly useful for the
user.

/*
* void
* checkPassword()
*
* Limits number of AJAX requests made per second.
*/
function checkPassword() {

document.getElementById("result").innerHTML = "";
var interval = 1000; // ms
var lastKeypress = new Date().getTime();

4You can conceive of some reason you might want to inform the user that an AJAX query was in progress—if you knew the
query was likely to be very slow, for example.

10

setTimeout(function() {
var currentTime = new Date().getTime();
if (currentTime - lastKeypress > interval)

requestPasswordCheck();
}, interval);

}
//]]>
</script>

Last we have the function that links the AJAX request being made to an action of the user’s. We could
have a big “Validate” button next to the password fields, but that would be ugly, and it would require the
user to participate. We could just set the requestPasswordCheck() function as the handler for the onkeyup
event of the password field, but then every single keystroke would generate a request to the server. Not a
good idea at all. We could also set requestPasswordCheck() as the handler for the onblur event instead,
which is like the opposite of the onfocus event and would fire when the user selected another field, but what
if the user entered his password last and never switched focus away from the password field?

So we set up a neat little function5 that checks how long it’s been since the user last struck a key, actually
performing a check only if that interval is over 1000 ms.6 The function passed to setTimeout() is called a
closure, a function that can remember aspects of the circumstances under which it was created. Now the
request will only be made at most once a second, and that often only if the user is a very slow typist.

Now let’s look at the PHP side of things. Before looking at any code, suppose for a moment that you
were working with a partner on this site, and he told you that he had already written the PHP validator; all
you needed to do was access the page with method GET and two key/value pairs password and password2,
each associated with the user’s input in that field. Armed with that information, you would be able to write
all of the above code without ever needing to look at the PHP. That’s the beauty of abstraction, and it’s how
you’ll be able to work with Google Maps on this problem set without seeing a single one of the thousands of
lines of code that actually render the maps or let you pan and zoom.

<?php
error_reporting(E_ALL ^ E_NOTICE ^ E_WARNING);
header(’Content-Type: text/xml’);

$password = $_GET["password"];
$password2 = $_GET["password2"];
if ($password != $password2)
{

print("<response valid=\"false\">Passwords must match</response>");
exit;

}
if (strlen($password) < 6)
{

print("<response valid=\"false\">Password must be at least 6 characters long
</response>");

exit;
}
if (($fp = fopen("dictionary.txt", "r")) === FALSE)

die("Could not open dictionary");
$dictionary = array();
while ((fscanf($fp, "%s", $word)) == 1)

5The code here is adapted from an example at http://www.selfcontained.us/2007/10/07/ajax-requests-when-users-stop-
typing/.

6See how cool first-class functions are?

11

{
$dictionary[$word] = TRUE;

}
fclose($fp);
if ($dictionary[strtolower($password)])

print("<response valid=\"false\">Your password may not be a dictionary word
</response>");

else
print("<response valid=\"true\">Your password is sufficiently strong

</response>");
?>

You should be able to figure out this PHP on your own (hint: speller!). Pay special attention to the call
to header(); this is necessary for the response to be interpreted as XML.

2.3 Validating a Username

There’s no reason we should stop at passwords. After all, it’s even more important that a user choose a valid
username than a strong password—we might be able to accept a weak password or no password for a site
requiring little security, but few database schemata will be happy with duplicate usernames. So let’s look at
a way to ensure that the user has chosen a unique username, again without any explicit submission on the
user’s part.

The JavaScript is omitted here because it barely changes at all—the interface it uses to validate usernames
is nearly identical to the one it uses to validate passwords.

<?php
require_once("includes/common.php");
error_reporting(E_ALL ^ E_NOTICE ^ E_WARNING);
header(’Content-Type: text/xml’);

$username = $_GET["username"];

if (strlen($username) < 6)
{

print("<response valid=\"false\">Username is not long enough</response>");
exit;

}

$sql = "SELECT uid FROM users WHERE username = ’"
. mysql_real_escape_string($username) . "’";

$result = mysql_query($sql);

if (mysql_num_rows($result) == 1)
print("<response valid=\"false\">That username is unavailable</response>");

else
print("<response valid=\"true\">That username is valid</response>");

?>

The changes in the PHP are more interesting. We’re using code very similar to that used in login2.php to
validate a user’s login. Here we simply check if a query for a username returns any rows. If it does, the
username is taken and the user will have to pick a different one.

While all this dynamic validation is fun to implement and use, remember that client-side validation is
never a substitute for that done on the server side. There is no guarantee that a malicious (or simply

12

old-fashioned) user will not circumvent our JavaScript and submit invalid values for any field. Client-side
validation serves mainly to create a more user-friendly experience and save the server a little bandwidth by
enabling it to return small packets of data tailored to specific queries rather than having to process an entire
form with potentially many incorrect inputs. It doesn’t mean that the server can ever assume its inputs to
be valid and sanitized.

3 Google Maps

Now we move on to the Google Maps API. While these notes will give an overview of the various tools
Google provides to those who wish to make use of its maps, there’s no substitute for going to the Google
Maps API Developer Guide at http://code.google.com/apis/maps/documentation/index.html and reading
about the API straight from the horse’s mouth. Google also provides several individual examples that make
clear the behavior of each aspect of the API. Try them out!

3.1 Including the API

First things first: before creating a page that uses the Google Maps API, be sure to include the following in
your page’s <head> element.

<script src="http://maps.google.com/maps?file=api&v=2&key=abcdefg&sensor=true_or_false"
type="text/javascript">

</script>

You should replace abcdefg with the key you received when you signed up to use the GM API and
true or false with false.7

3.2 Setting Up

Ordinarily you do most of your work within the body tag rather than with it, but in this case you’ll need to
modify it to ensure proper operation of the GM API.

<body onload="initialize()" onunload="GUnload()">

Can you guess what this does after the above tutorial on event handlers? When the body tag is loaded,
i.e., when the page itself is loaded, the initialize() function will be called. Inside that function is where
you’re expected to create your map and prepare it for the user. You don’t need to implement the GUnload()
function yourself; that’s a Google Maps API function designed to prevent memory leaks from stealing into
your app and annoying your users by slowing down their browsers.

3.3 Creating a Map

The GMap2 object is at the core of the Maps API. The most basic way to create one is as follows:

var map = new GMap2(document.getElementById("map_canvas"));

The GMap2 constructor expects to be passed an element on the page, such as a div, where the map can be
rendered. You may optionally pass a GMap2Options object as the second parameter if you want to customize
your map further. In any case, you now have your map, albeit not a very useful one. This can be (partially)
solved with a call to setCenter().

map.setCenter(new GLatLng(42.376, -71.115), 16);

7...unless you’re doing something very interesting involving GPS for your final project, in which case you should choose true.

13

Look familiar? setCenter() takes a GLatLng object, which encapsulates a latitude and longitude, and a
zoom level, which is simply a number representing how close or how far you want your view to be from the
ground. If you’d rather have Google Maps tell you something about its latitude and longitude, a call like

var bounds = map.getBounds();

will place information about the four corners of the viewport in the bounds variable, enabling you to do
something like

var southWest = bounds.getSouthWest();

to turn the southWest variable into a GLatLng with the latitude and longitude of the point at the lower
left-hand corner of the viewport.

Feel free as well to use the setMapType() method to render the map type of your choice. The call

map.setMapType(MAPTYPE);

where MAPTYPE is one of G NORMAL MAP (for the standard street view), G SATELLITE MAP (for the photographic
map), or G HYBRID MAP (for those who just can’t decide) will change the rendering mode to the one of your
choice.

3.4 Getting Dynamic

Now that you’re satisfied with your map, you can make it do your bidding. The methods setCenter() and
panTo() enable you to move the map to a different point programmatically, the former instantaneously and
the latter smoothly. So something like

<script>
function moveMap {

map.panTo(new GLatLng(document.getElementById("lat").value,
document.getElementById("lng").value), 13);

}
</script>
<!--- body and map div here --->
<input id="lat" type="text"/>

<input id="lng" type="text"/>

<input type="button" value="Move" onclick="moveMap();"/>

would let your user fly smoothly around the world. We can also use the openInfoWindowHtml() method to
pop up interesting facts about locations on the map:

map.openInfoWindowHtml(map.getCenter(),
document.createTextNode("This is the center of the map."));

Well, facts, anyway. Note the use of a DOM method to generate a text node out of the ether.

3.5 Events

The Google Maps API provides a somewhat more sophisticated way to bind events to handlers than the
one you’ve seen so far. The GEvent.addListener(object, event, function) function binds the handler
represented by function to the event specified in event for the given object. Different types of objects
support different events.8

Event listeners bound in this way can also support closures. Remember the function used to throttle the
number of AJAX queries from our username/password validator?

8You can see a complete list of events for all objects at http://code.google.com/apis/maps/documentation/reference.html.

14

function createMarker(point, number) {
var marker = new GMarker(point);
var message = ["This","is","the","secret","message"];
marker.value = number;
GEvent.addListener(marker, "click", function() {

var myHtml = "#" + number + "
" + message[number -1];
map.openInfoWindowHtml(point, myHtml);

});
return marker;

}

// Add 5 markers to the map at random locations
var bounds = map.getBounds();
var southWest = bounds.getSouthWest();
var northEast = bounds.getNorthEast();
var lngSpan = northEast.lng() - southWest.lng();
var latSpan = northEast.lat() - southWest.lat();
for (var i = 0; i < 5; i++) {

var point = new GLatLng(southWest.lat() + latSpan * Math.random(),
southWest.lng() + lngSpan * Math.random());
map.addOverlay(createMarker(point, i + 1));

}

This code from the Google Maps API examples demonstrates how markers can be created with listener
functions that reflect the values of outside data (the “messages” that they possess) even though the marker
object itself does not know what the message is.

Like JavaScript events, Google Maps API events sometimes pass arguments giving information about the
event. So

GEvent.addListener(map, "click", function(latlng) {
if (latlng) {

alert("You clicked the map at " + latlng.lat() + ", " + latlng.lng() + ".");
}

}

would cause an alert with latitude/longitude data anytime someone clicked inside this map.
Finally, Google provides GEvent.addDomListener() for binding events like these for regular DOM objects

in case you don’t like doing it the usual way.

3.6 Controls

Controls are the objects on a map that allow you to interact with it. Controls include things like the zoom
bar and the radio button-like map type selector. You can add a control with the addControl() function,
which takes a control object to add:

map.addControl(new GLargeMapControl());

Dynamic controls like the map type selector, which has to know which map types are allowed before it
can display itself, are constructed only once. As such, you need to iron out your map type before you add
any controls. The addControl() function can take an additional argument, a GControlPosition object
representing a corner of the map to create the control in and an offset from that corner:

map.addControl(new GLargeMapControl(),
new GControlPosition(G_ANCHOR_TOP_RIGHT, new GSize(10,10));

15

3.7 Overlays

Map overlays are objects that are tied to points on the globe (as opposed to points in your viewport, like
those to which controls are bound). The Maps API supports markers, lines of various types, and even the
replacement of the map tile images themselves, but we’ll be focusing on markers. Overlays in general are
added with the addOverlay() function, which is passed an object to add as an overlay.

map.addOverlay(new GMarker(new GLatLng(100, 100)));

The constructor for a GMarker can accept a second parameter specifying options for the marker, like whether
or not it should be draggable.

map.addOverlay(new GMarker(new GLatLng(50, 50), { draggable: true }));

Do you remember from lecture what type that last argument is? Another potential option is the type of
icon the marker should use.

// Set up our marker to use a default icon
var blueIcon = new GIcon(G_DEFAULT_ICON);
blueIcon.image = "http://www.google.com/intl/en_us/mapfiles/ms/micons/blue-dot.png";
markerOptions = { icon:blueIcon };
map.addOverlay(new GMarker(point, markerOptions));

// Set up a marker to use a custom icon
var tinyIcon = new GIcon();
tinyIcon.image = "http://labs.google.com/ridefinder/images/mm_20_red.png";
tinyIcon.shadow = "http://labs.google.com/ridefinder/images/mm_20_shadow.png";
tinyIcon.iconSize = new GSize(12, 20);
tinyIcon.shadowSize = new GSize(22, 20);
tinyIcon.iconAnchor = new GPoint(6, 20);
tinyIcon.infoWindowAnchor = new GPoint(5, 1);
markerOptions = { icon:tinyIcon };
map.addOverlay(new GMarker(point2, markerOptions));

This Google sample code demonstrates setting up and adding a marker with a built-in graphic and a custom-
defined graphic type, which is somewhat harder.

3.8 Services

The Google Maps API includes a few other features for utility purposes.

3.8.1 AJAX Requests and XML Parsing

If you don’t want to deal with the standard XMLHttpRequest object, Google provides a cross-platform
alternative in the GXmlHttp object. It’s used exactly like an XMLHttpRequest other than the fact it must
be created with a call to GXmlHttp.create() and not new. Google also provides an object that hides the
process of waiting for readyState == 4, making the code for such a request much more compact.

GDownloadUrl("myfile.txt", function(data, responseCode) {
alert(data);

});

If you want to avoid dealing with headers, the GXml.parse() method can convert a string into an XML
object that can then be acted upon using normal DOM methods.

16

3.8.2 Geocoding

The incredibly useful GClientGeocoder object can convert string addresses like “1600 Pennsylvania Ave”
into GLatLng objects, which are much more useful everywhere else in the API. The second argument to the
Geocoder’s getLatLng() function is the function to be executed when the geocoding operation is complete,
as it can be slow. The GClientGeocoder object also provides a getLocations() method that returns a
JSON (JavaScript Object Notation) object with detailed information about an address. This can be used to
convert the address typed by a user, which may be incorrect or missing information, into a canonical address
with all information filled out. The GClientGeocoder can also perform reverse geocoding, returning a JSON
object in response to a GLatLng object representing a point. Finally, much like Yahoo’s stock quote service,
the Google Maps API lets us request address data through a URL, http://maps.google.com/maps/geo?. The
following arguments can be passed through the query string using a standard AJAX request:

• q (required)
The address that you want to geocode.

• key (required)
Your API key.

• sensor (required)
Indicates whether or not the geocoding request comes from a device with a location sensor. This value
must be either true or false.

• output (required)
The format in which the output should be generated. The options are xml, kml, csv, or (default) json.

• ll (optional)
The (latitude, longitude) of the viewport center expressed as a comma-separated string (e.g.,
"ll=40.479581,-117.773438"). This parameter only has meaning if the spn parameter is also
passed to the geocoder.

• spn (optional)
The “span” of the viewport expressed as a comma-separated string of (latitude,longitude) (e.g.,
"spn=11.1873,22.5"). This parameter only has meaning if the ll parameter is also passed to the
geocoder.

• gl (optional)
The country code, specified as a ccTLD (“top-level domain”) two-character value.

17

