
What’s 51 about?

Programming isn’t hard.

Programming well is very hard.

We want you to write code that is:
  Reliable, efficient, readable, testable, provable,

maintainable… elegant!

Expand your problem-solving skills:
  Recognize problems & map them onto the right

languages, abstractions, & algorithms.

Course Focus
“Software Engineering in the Small”

  Introduce new programming abstractions
  e.g., closures, abstract & algebraic data types, polymorphism,

modules, classes & inheritance, synchronization, patterns, etc.
  increase your computational tool-box, stretch your thinking.

  Introduce engineering design
  e.g., coding style, interface design, efficiency concerns, testing.
  models & analytic tools (e.g., big-O, evaluation models.)
  learn to analyze, think, and express with precision.

2 CS51 Spring 2010

Who should take this course?
  CS concentrators & minors should:

  knowledge & experience is crucial for upper-level, software-
intensive courses (compilers, OS, networking, AI, graphics, etc.)

  51 : build up abstractions ; 61: drive through abstractions
  Also electrical engineering, statistics, [applied] math,

systems & synthetic biology, finance, economics, etc.
  these fields (and many others) demand computational thinking.

  Entrepreneurs
  engineering take on design is invaluable.

  Necessary background:
  basic programming, algorithms, data structures (CS50)
  mathematical “sophistication” (calc, ideally algebra)

3 CS51 Spring 2010

Course Tools
We’ll be using two very different programming environments.

  get used to learning languages (not that hard once you’ve absorbed
representatives from major genres.)

  Objective Caml (a.k.a. Ocaml & F#): First 2/3rds of the class
  functional & higher-order programming
  functional patterns
  substitution & environment models of evaluation
  types, polymorphism
  abstract data types, interfaces, modules

  Java: Final 1/3rd of the class
  imperative & object-oriented programming
  encapsulation, classes, subtyping, inheritance
  concurrency, synchronization, message passing
  OO design patterns

4 CS51 Spring 2010

Language & Code
  Language & abstractions matter.

  Try formulating an algorithm to multiply Roman numerals.

  Often, don’t have the luxury of choosing the language.
  We can still conceptualize & prototype using the right language

abstractions.
  If we understand relationships between linguistic abstractions,

we can realize the code in any language.

Example: Red-Black Trees
  A particular kind of balanced search tree [Guibas &

Sedgewick 1978].

7

4

1

11

5 15

12 17
3 0

C code (part 1/4)

void rb_insert(Tree T, node x) { !
 tree_insert(T, x); !
 x->colour = red; !
 while ((x != T->root) && (x->parent->colour == red)) { !
 if (x->parent == x->parent->parent->left) { !
! !y = x->parent->parent->right;!

 if (y->colour == red) { !
! !x->parent->colour = black;!

 y->colour = black;!
 x->parent->parent->colour = red;!
! x = x->parent->parent; !

 } else {!
! if (x == x->parent->right) {!

 x = x->parent; !
! left_rotate(T, x); !

 } !
 x->parent->colour = black;!
 x->parent->parent->colour = red;!
 right_rotate(T, x->parent->parent); !
 } !
 } else {!
! . . . /* repeat above with red/black swapped */!

C code (part 2/4)
void left_rotate(Tree T, node x) { !
 node y; !
 y = x->right; !
 x->right = y->left;!
 if (y->left != NULL) !
 y->left->parent = x; !

 y->parent = x->parent; !
 if (x->parent == NULL) !
 T->root = y; !
 else if (x == (x->parent)->left) !
 x->parent->left = y; !
 else !

 x->parent->right = y; !
 y->left = x; !
 x->parent = y; !
}!

/* repeat above for right_rotate with “obvious” changes */!

ML Code for Insert

fun balance((Blk,T(Red,T(Red,a,x,b),y,c),z,d)

 |(Blk,T(Red,a,x,T(Red,b,y,c)),z,d)

 |(Blk,a,x,T(Red,T(Red,b,y,c),z,d))

 |(Blk,a,x,T(Red,b,y,T(Red,c,z,d)))) =

 T(Red,T(Blk,a,x,b),y,T(Blk,c,z,d))
 | balance x = T x

fun ins x Empty = T(R,Empty,x,Empty)

 | ins x (T(color,a,y,b)) =

 if x <= y then balance(color,ins x a,y,b)

 else if x > y then balance(color,a,y,ins x b)

XKCD

10 CS51 Spring 2010

