
Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–10:00) 2

2 Some Common Mistakes (10:00–18:00) 2

3 Functions and Scope (18:00–60:00) 3
3.1 return1.c . 3
3.2 return2.c . 5
3.3 Scope . 6

3.3.1 buggy3.c . 6
3.4 Global Variables . 9

3.4.1 global.c . 9
3.5 buggy5.c . 11
3.6 The Stack . 12

4 Command-line Arguments (60:00–74:00) 13
4.1 argv1.c . 13
4.2 argv2.c . 15
4.3 Cryptography . 16

1

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

1 Announcements and Demos (0:00–10:00)

• This is CS50.

• Inspired by a note from a student, check out this scene from the 1969 film
The Computer Wore Tennis Shoes. The rest of the movie actually has
very little to do with computer science.

• Sectioning is taking place now. The FAS sectioning tool will be active
later today.

• Take advantage of office hours, the schedule for which is here. Physical
office hours are held in Science Center B14. When you walk in, write your
name on the whiteboard and we’ll get to you one by one. The purpose of
office hours is to get you unstuck from a problem that you might otherwise
waste several hours figuring out on your own. There is a time crunch,
however, so one you get unstuck, the teaching fellow that is helping you
may move on to the next student in line. If you’d like to spend more
time hashing out concepts, feel free to reach out to your teaching fellow
or David for a private appointment.

• The course’s bulletin board is now active. You can browse other students’
questions and post your own, as well. If you’re sharing a substantial
amount of code or the question is otherwise person, you can mark it as
private. Alternatively, you can e-mail help@cs50.net. By default, your
posts will be anonymized: only the staff will be able to see who you are.

• Another option available to you is virtual office hours. By logging into
the Virtual Terminal Room at the designated times, you’ll be able to chat
and share your screen with teaching fellows who can hopefully resolve your
minor issues without your having to drag yourself down to the basement
of the Science Center.

2 Some Common Mistakes (10:00–18:00)

• Take a look at the following lines of code which we’ve been seeing a lot
during office hours:

printf("Input a number: ");
GetInt();

The problem with this is that the return value of GetInt() is not being
stored. We can demonstrate this with volunteers, one of whom represents
GetInt(), one of whom represents the user, and one of whom represents
a variable. GetInt() hands a piece of paper to the user and asks her for
a number. The user writes the number down on that piece of paper and
passes it back to our program. But if our variable isn’t there to catch the
piece of paper, it simply falls to the floor unused. Only when the variable

2

http://www.youtube.com/watch?v=U7y7qWFArjw
http://www.cs50.net/ohs
http://help.cs50.net
mailto:help@cs50.net
http://cs50.net/vtr

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

is present to catch the piece of paper are we able to use the value in the
rest of our program.

• See if you can identify the addition problem with the lines below:

printf("Input a number: ");
{

GetInt();
}

The curly braces aren’t necessary here, as they are only necessary to encap-
sulate loops, conditions, and functions. This code actually will compile,
but it’s definitely not good style.

• In this example, the semicolon is misplaced:

for (int i = 0; i < 100; i++);
{

// do something
}

The effect will be for the code in the curly braces to execute only once as
the for loop has been terminated prematurely by the semicolon.

3 Functions and Scope (18:00–60:00)

• You can think of a function as a black box. If it was written by someone
else, you don’t need to know how exactly it does what it does, you just
need to know what inputs to give it and what outputs it will return.

3.1 return1.c

• Take a look at our first foray into writing our own functions:

/**
* return1.c
*
* Computer Science 50
* David J. Malan
*
* Increments a variable.
*
* Demonstrates use of parameter and return value.
***/

#include <stdio.h>

3

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

// function prototype
int increment(int a);

int
main(void)
{

int x = 2;
printf("x is now %d\n", x);
printf("Incrementing...\n");
x = increment(x);
printf("Incremented!\n");
printf("x is now %d\n", x);

}

/*
* Returns argument plus one.
*/

int
increment(int a)
{

return a + 1;
}

At the top of the file, we have to declare our function name just like we
declare variables. This is called a function prototype. Notice that it ends
with a semicolon.

• Any time you find yourself tempted to copy and paste several lines of code
over and over again, chances are those lines of code are good candidates
for being factored out into a separate function. In computer science speak,
this is called hierarchical decomposition.

• You should give meaningful names to your functions just as you do your
variables.

• The function’s inputs, also known as parameters or arguments, are speci-
fied in the parentheses after its name. In this case, our input doesn’t need
a meaningful name because it is only being used very temporarily and
very transparently in the function code, much like an iterator variable in
a loop.

• Be careful, as always, with variable types. If you specify that your function
returns an int, make sure that you actually return one or you may run
into compiler errors or typecasting bugs.

4

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

• Of course, this function is not the most interesting since it can easily be
replaced with the ++ operator, but it illustrates at least our capability to
abstract away certain tasks.

• Take a look at what happens when we try to compile if we don’t include
the function prototype at the top of our file:

cc1: warnings being treated as errors
return1.c: In function ‘main’:
return1.c:21: error: implicit declaration of function ‘increment’
make: *** [return1] Error 1

Notice that GCC points us to line 21, when increment is first called, as
the source of the error. When return1 is being compiled, the compiler
looks first for the function named main. Since main is defined before
increment, it will throw an error as soon as increment is called because
there is no definition for it yet. To fix this, we can either put the definition
of increment before that of main or we can write a function prototype,
which declares the function but does not define it, at the top of the file.
The latter solution is preferable because it makes our file more readable
and it works even in scenarios in which functions call each other and
correctly ordering them top to bottom is not possible.

• Question: how can you name the function input a in the definition but
pass it as x when you call it within main? Variable names actually belong,
so to speak, to the functions that are using them. In this case, x belongs
to main and a belongs to increment though they have the same variable.
Underneath the hood, 8 bytes of memory are allocated for them, 4 bytes
for each copy of the variable. This can cause interesting bugs as we’ll see
in a moment.

3.2 return2.c

• increment was a pretty useless function, but you can see how we might
build off the idea to produce something a little more interesting:

/**
* return2.c
*
* Computer Science 50
* David J. Malan
*
* Cubes a variable.
*
* Demonstrates use of parameter and return value.
***/

5

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

#include <stdio.h>

// function prototype
int cube(int a);

int
main(void)
{

int x = 2;
printf("x is now %d\n", x);
printf("Cubing...\n");
x = cube(x);
printf("Cubed!\n");
printf("x is now %d\n", x);

}

/*
* Cubes argument.
*/

int
cube(int a)
{

return a * a * a;
}

The cube function is a little more compelling since it will save us from
writing x * x * x whenever we need to cube something.

3.3 Scope

3.3.1 buggy3.c

• As we mentioned earlier, variables belong to the functions that manipulate
them. This is the concept of scope. Variable scope can introduce some
subtle bugs, as we’ll soon see.

• How would we go about swapping the values of two variables? Realize
that we can’t accomplish this without using a temporary variable. For
example, the following lines of code won’t work:

int x = 1;
int y = 2;

6

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

x = y;
y = x;

Here, both variables will end up having the value 2 because the value of
x is clobbered. We can fix this like so:

int x = 1;
int y = 2;
int tmp = x;

x = y;
y = tmp;

This, as you can see, is very similar to our implementation of swap in
buggy3.c:

/**
* buggy3.c
*
* Computer Science 50
* David J. Malan
*
* Should swap two variables’ values, but doesn’t!
* Can you find the bug?
***/

#include <stdio.h>

// function prototype
void swap(int a, int b);

int
main(void)
{

int x = 1;
int y = 2;

printf("x is %d\n", x);
printf("y is %d\n", y);
printf("Swapping...\n");
swap(x, y);
printf("Swapped!\n");
printf("x is %d\n", x);
printf("y is %d\n", y);

7

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

}

/*
* Swap arguments’ values.
*/

void
swap(int a, int b)
{

int tmp = a;
a = b;
b = tmp;

}

The swap function has a return type of void because we actually don’t
need it to return anything at all.

• So everything looks fine, but when we run the program, we get the follow-
ing output:

x is 1
y is 2
Swapping...
Swapped!
x is 1
y is 2

• Hmm, let’s try adding some printf statements to swap so we can examine
the values of a and b:

/*
* Swap arguments’ values.
*/

void
swap(int a, int b)
{

int tmp = a;
a = b;
b = tmp;
printf("a=%d\n", a);
printf("b=%d\n", b);

}

Now we get the following output:

8

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

x is 1
y is 2
Swapping...
a=2
b=1
Swapped!
x is 1
y is 2

• What’s really happening when we call swap? Are we passing in x and y
themselves? No, in fact, we’re passing in copies of those variables. So
while swap successfully swaps the values of a and b, it doesn’t actually
have any effect on the values of x and y.

• In computer science speak, we say that functions like swap have their own
scope. Because x and y exist in a different context, the function can’t
alter them directly—at least the way we’ve written it here. We’ll discuss
a solution to this shortly.

• Question: why isn’t tmp mentioned in the function prototype for swap?
You only need to specify the function’s return type, name, and arguments,
not its local variables.

• Question: do curly braces define scope? Yes and no. It’s a good rule of
thumb that variables declared within curly braces can only be used within
those same curly braces.

3.4 Global Variables

3.4.1 global.c

• One way to fix this problem of scope is to use global variables. These
variables are unique in that they can be referenced by any function in a
program. Take a look at global.c to see how they are used:

/**
* global.c
*
* Computer Science 50
* David J. Malan
*
* Increments variables.
*
* Demonstrates use of global variable and issue of scope.
***/

#include <stdio.h>

9

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

// global variable
int x;

// function prototype
void increment(void);

int
main(void)
{

printf("x is now %d\n", x);
printf("Initializing...\n");
x = 1;
printf("Initialized!\n");
printf("x is now %d\n", x);
printf("Incrementing...\n");
increment();
printf("Incremented!\n");
printf("x is now %d\n", x);

}

/*
* Increments x.
*/

void
increment(void)
{

x++;
}

Here we declare the variable x outside the scope of both increment and
main, right above the function protoype. This solves our problem in that
x can be referenced in any of the functions in this file, but it’s not the
cure-all that it might seem. Global variables are generally considered bad
style because they’re hard to keep track of. If you’re using code from
other libraries, for example, the names of your global variables might
inadvertently conflict with the names of library variables and introduce
subtle bugs into your program.

• The increment function now returns void and takes void as arguments
because it can reference x without it having been passed.

10

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

3.5 buggy5.c

• To shed more light on this problem of scope, take a look at buggy5.c:

/**
* buggy5.c
*
* Computer Science 50
* David J. Malan
*
* Should increment a variable, but doesn’t!
* Can you find the bug?
***/

#include <stdio.h>

// global variable
int x;

// function prototype
void increment(void);

int
main(void)
{

printf("x is now %d\n", x);
printf("Initializing...\n");
x = 1;
printf("Initialized!\n");
printf("x is now %d\n", x);
printf("Incrementing...\n");
increment();
printf("Incremented!\n");
printf("x is now %d\n", x);

}

/*
* Increments x.
*/

void
increment(void)
{

11

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

int x = 10;
x++;

}

• As an aside, we are able to use printf without declaring it in our file
because we include stdio.h. stdio.h is actually header file that contains
nothing but function prototypes so the compiler will know about these
other functions.

• When we run this program, it prints the value 1 for x both times. Why is
that? When increment is called, we declare a variable int x. When we
execute the statement x++, then, we’re incrementing this newly declared
variable rather than the one which is global in scope. This reuse of a
variable name in different scopes is called shadowing and is perfectly fine as
long as you keep track of which version of the variable is being manipulated
at any given time.

3.6 The Stack

• What’s actually going on in memory when we deal with these variables?
Variables are stored in RAM, a temporary kind of memory, as opposed to
on the hard disk, a more permanent kind of memory. We can visualize a
computer’s RAM like so:

As a matter of convention, main’s parameters are represented at the bot-
tom. Next in memory are variables which are declared within the scope of
main. Then, if there are any other functions we call such as foo, we tack on
the parameters that are passed to foo as well as foo’s local variables—the
variables declared within its scope.

12

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

• You can think of RAM as a stack of cafeteria trays, each representing a
chunk of memory. Whenever a function is called, another tray is added to
the top of the stack. As soon as that function returns, the tray is removed
from the stack.

• This is a very brief look at what is known in computer science (quite
aptly) as the stack. As you can see from this visualization, each function
has its own frame, or chunk of memory, and doesn’t have access to any
other function’s frame. Global variables are actually stored at the top of
memory along with what’s called the text segment of your program—its
representation in binary after being compiled. As we’ll see soon, there also
exists an area of memory called the heap from which you can explicitly
borrow chunks within your program.

• Whereas the heap grows downward, the stack grows upward. If either
grows too much, the two will collide with each other and your program
will most likely fail, probably with a segmentation fault which indicates
that two segments of memory have overrun each other. Often a file named
core containing the contents of memory at the time of the segmentation
fault will also be dumped.

• Incidentally, foo is a nonsense word that computer scientists use as a
placeholder. There’s also bar, baz, qux, and more.

4 Command-line Arguments (60:00–74:00)

• You may have noticed in some of our programs that we defined main as
taking two arguments instead of void:

int main (int argc, char *argv[])

As it turns out, main is its own function just like any custom one we might
write. int argc and char *argv[] are, in fact, two arguments that we
specify in its function definition. How do we provide these arguments?
From the command line!

• But you’ve been doing this all along. Recall that whenever you’ve executed
the gcc command, you’ve provided it with the name of the file you want
to compile as a command-line argument.

• Incidentally, argv stands for argument vector and argc stands for argument
count.

4.1 argv1.c

• argv1.c makes use of main’s inputs argv and argc:

13

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

/**
* argv1.c
*
* Computer Science 50
* David J. Malan
*
* Prints command-line arguments, one per line.
*
* Demonstrates use of argv.
***/

#include <stdio.h>

int
main(int argc, char *argv[])
{

// print arguments
printf("\n");
for (int i = 0; i < argc; i++)

printf("%s\n", argv[i]);
printf("\n");

}

argc holds the number of command-line arguments that you passed to
the program. By default, the 0th argument is always the name of your
program, so argc will always be at least 1.

• Recall that we’ve been using string as a shorthand for char *. A char *
is actually a pointer which we’ll discuss more in depth next week.

• The square brackets after argv indicate that it’s a special type of variable
that has multiple values inside of it. In order to access those values, you
can index into it by specifying a number between the square brackets.
argv[0], for example, gives the 0th argument which is always the name
of the program.

• argv is an array, equivalent to an inventory in Scratch. Arrays are 0-
indexed, so if argv has n elements, then argv[n-1] is the last element.
Trying to access argv[n] will cause problems and may even leave your
system vulnerable to being compromised. The Wii hack we mentioned
last time used this exploit which is called a buffer overrun attack.

• Now, looking at argv1.c, we can see that it prints the command-line
arguments that were passed to it.

• If we change the loop’s terminating condition to i <= argc, we’ll be in-
dexing off the end of the array. Compiling and running the program will

14

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

cause a segmentation fault because you are touching memory that doesn’t
belong to you.

4.2 argv2.c

• argv2.c demonstrates what a string actually is:

/**
* argv2.c
*
* Computer Science 50
* David J. Malan
*
* Prints command-line arguments, one character per line.
*
* Demonstrates argv as a two-dimensional array.
***/

#include <stdio.h>
#include <string.h>

int
main(int argc, char *argv[])
{

// print arguments
printf("\n");
for (int i = 0; i < argc; i++)
{

for (int j = 0, n = strlen(argv[i]); j < n; j++)
printf("%c\n", argv[i][j]);

printf("\n");
}

}

Notice that in the first part of parentheses after the second for, we ini-
tialize not just j, but also n. We do this simply by separating them with
a comma. strlen returns the length of a string. Because argv is actually
an array of strings, we know that argv[i] is a string. It turns out that
using bracket notation, you can also index into a string and return one of
its characters.

• Now we’re iterating over not only all of the command-line arguments, but
over each of the arguments themselves and printing them out one character
at a time. We access each of these characters using the following syntax:

argv[i][j]

15

Computer Science 50
Fall 2010
Scribe Notes

Week 2 Wednesday: September 15, 2010
Andrew Sellergren

This gives the jth character of the ith argument. argv[], more properly
speaking, is a two-dimensional array.

4.3 Cryptography

• Where are we going with all this? For starters, the world of cryptography
in Problem Set 2! You’ll implement Caesar’s cipher by leveraging the fact
that strings are arrays of characters. Caesar’s cipher was popularized in
A Christmas Story with Ralphie’s decoder ring. Essentially, if you rotate
each letter of the alphabet by a certain number called a key, you can write
encrypted text that the recipient can decode if he knows the key.

• Of course, you can crack Caesar’s cipher simply by brute force trying all
the possible keys of which there are only 26.

• During World War II, the enigma machine implemented cryptography
mechanically. The secret to the Germans’ code lay in the machine itself,
so the Allies endeavored to steal one from a U-boat.

• But what about Facebook or online banking? How can we encrypt our
messages to them without agreeing on a key beforehand? This is the secret
of public-key cryptography which we’ll delve more into next week.

16

	Announcements and Demos (0:00–10:00)
	Some Common Mistakes (10:00–18:00)
	Functions and Scope (18:00–60:00)
	return1.c
	return2.c
	Scope
	buggy3.c

	Global Variables
	global.c

	buggy5.c
	The Stack

	Command-line Arguments (60:00–74:00)
	argv1.c
	argv2.c
	Cryptography

