
Computer Science 50
Fall 2010
Scribe Notes

Week 3 Wednesday: September 22, 2010
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–4:00) 2

2 From Last Time (4:00–6:00) 2

3 Debugging (6:00–25:00) 2

4 Sorting (25:00–65:00) 6
4.1 Bubble Sort . 6
4.2 Selection Sort . 7
4.3 Big O Notation and Runtime . 8

5 Recursion (65:00–71:00) 9
5.1 sigma1.c . 9
5.2 sigma2.c . 11

6 A Teaser (71:00–72:00) 13

1

Computer Science 50
Fall 2010
Scribe Notes

Week 3 Wednesday: September 22, 2010
Andrew Sellergren

1 Announcements and Demos (0:00–4:00)

• This is CS50.

• 0 new handouts.

• If you still need to change sections, please do so today. Either e-mail
help@cs50.net or follow the instructions in the e-mail the bot sent you.

• Zynga will be here for recruiting purposes today at 6:30 PM in Maxwell
Dworkin 119. Bring your resumes. There will be free food and a chance
to win an HP Mini Notebook.

• Brian Kernighan, a former professor of CS50 now on sabbatical from
Princeton, will be here Thursday at 3:30 PM for ice cream on the 2nd
floor of Maxwell Dworkin and to give a talk on “The Changing Face of
Programming” at 4:00 PM in Maxwell Dworkin G125. His first CS50 lec-
ture included a demonstration of how to shave a beard with hedge clippers!

• Facebook will be here Monday at 12 PM in Maxwell Dworkin 119. Thomas
Carriero, former CS50 TF, will be recruiting. Lunch will be served.

2 From Last Time (4:00–6:00)

• Searching through an unsorted array for a single integer proved time-
consuming because we could do no better than brute force. In the worst
case, brute force search takes n steps to search through an array of length
n.

• Thankfully, we did a little better with a sorted array. Using binary search,
we significantly reduced the number of steps it took to find a single integer.

• How do we go about sorting an array of numbers? What about, in the
context of Facebook, a list of friends? We’ll dive more into this today.

3 Debugging (6:00–25:00)

• Thus far, you have probably only used printf to debug your programs.
And, of course, if you have a syntax error in your program, GCC will
point it out, albeit somewhat cryptically. As your programs get more
complicated, this kind of debugging becomes unwieldy.

• GDB, or GNU Debugger, allows you to step through your program line
by line while it’s executing. In this way, you can examine the state of the
program in realtime, printing out variables and peeking at the stack as
needed. You can also set breakpoints in GDB which allow you to pause
your program’s execution at a specific line so that you don’t have to step
through all the previous ones to get to it.

2

mailto:help@cs50.net

Computer Science 50
Fall 2010
Scribe Notes

Week 3 Wednesday: September 22, 2010
Andrew Sellergren

• To demonstrate the use of GDB, we’ll examine buggy3.c. Recall this is
the program that aimed to swap the values of two variables but failed to do
so because of issues with scope: although the values were actually swapped
in the function swap, as soon as that function returned, the variables took
on their original values.

• When we run make buggy3, we’re actually running gcc with a number of
flags. -lm, -lcs50, and -lcrypt link in the math.h, cs50.h, and crypt.h
libraries, respectively. -Werror instructs the compiler to treat warnings
as errors. We know this is nitpicky, but it will force you to correct your
mistakes, however small. -ggdb includes some additional bits in your
program’s binary that help GDB follow along while it executes.

• If we run buggy3, we confirm that the values of x and y aren’t actually
swapped. However, if we add a printf statement at the bottom of swap,
we see that the local variables a and b have been swapped.

• Now, from the command line, we run gdb buggy3 to start GDB. After
the warranty and copyright information is printed, we are presented with
a prompt that looks like this:

(gdb)

Here, if we type the command run, our program will execute just as it
would outside of GDB and the message “Program exited normally.” will
be printed. This message indicates that main returned 0.

• To set a breakpoint at the beginning of the main function, we execute the
following command from the GDB prompt.

(gdb) break main

This gives output that looks something like the following:

Breakpoint 1 at 0x804842d: file buggy3.c, line 21.

The 0x804842d is a number in hexadecimal, which is a base system like
decimal or binary, and represents a memory address. Line 21 is where
main begins in our source code.

• Now if we type run at the prompt, we get the following:

Starting program: /home/malan/src2/buggy3

Breakpoint 1, main () at buggy3.c: 21
21 int x = 1;

3

Computer Science 50
Fall 2010
Scribe Notes

Week 3 Wednesday: September 22, 2010
Andrew Sellergren

Our program has paused execution right before line 21. Line 21 will ex-
ecute if we type the command next or n, for short. Once we’ve done so,
we can print out the value of x like so:

(gdb) print x
$1 = 1

The $1 allows us to refer back to variables we’ve already printed later in
the program’s execution.

• At this point, line 22, in which y is initialized, has not been executed yet.
Let’s print out y anyway:

$2 = 3223540

This is a strong reminder to initialize your variables before you use them!
If we don’t explicitly assign a value to y, we have no way of knowing what
it contains.

• Executing next a few more times gives us the program’s output commin-
gled with GDB’s:

(gdb) next
24 printf("x is %d\n", x);
(gdb) next
x is 1
25 printf("y is %d\n", y);
(gdb) next
y is 2
26 printf("Swapping...\n");
(gdb) next
Swapping...
27 swap(x, y);

At line 27, we’re about to call the function swap. If we next again, we go
straight to line 28 where “Swapped!” is printed. Then if we try to print
x and y, they’ll have the values 1 and 2, respectively.

• This exercise wasn’t all that useful because we didn’t get to see what was
going on inside swap. If we wanted to do that, we could have typed step
when we reached line 27. This tells GDB to step inside any functions that
are called on the next line.

• Stepping into swap and executing the list command gives us the follow-
ing:

4

Computer Science 50
Fall 2010
Scribe Notes

Week 3 Wednesday: September 22, 2010
Andrew Sellergren

(gdb) step
swap (a=1, b=2) at buggy3.c:41
41 int tmp = a;
(gdb) list
36 */
37
38 void
39 swap(int a, int b)
40 {
41 int tmp = a;
42 a = b;
43 b = tmp;
44 }

list shows us the lines of source code both above and below the one we’re
currently paused on.

• As we did before with y, let’s print tmp before we’ve initialized it:

(gdb) print tmp
$1 = 0

See what we mean about not knowing what an uninitialized variable will
contain?

• The next lines of code will clobber the value of a with that of b. Before
we do so, let’s examine tmp, a and b:

(gdb) next
42 a = b;
(gdb) print tmp
$7 = 1
(gdb) print a
$8 = 1
(gdb) print b
$9 = 2

• Once we clobber a with b we can see that they both equal 2:

(gdb) next
43 b = tmp;
(gdb) print a
$10 = 2
(gdb) print b
$11 = 2

Although this example is somewhat elementary, hopefully you can see how
useful GDB will be as your programs get more and more complex.

5

Computer Science 50
Fall 2010
Scribe Notes

Week 3 Wednesday: September 22, 2010
Andrew Sellergren

• If we type run in the middle of the program’s execution, we will be asked
if we want to start from the beginning.

• Let’s say we’re paused while in the swap function but we forget exactly
how we got there. Use the backtrace command:

swap (a=1, b=2) at buggy3.c:41
41 int tmp = a;
(gdb) backtrace
#0 swap (a=1, b=2) at buggy3.c:41
#1 0x08048487 in main () at buggy3.c:27
(gdb)

backtrace shows us the contents of the stack or RAM. As you can see,
there are two stack frames, one for swap and one for main.

• Question: can you only set breakpoints at main? No, we could’ve typed
break swap to set a breakpoint on the swap function or we could even
have typed break 23 to set a breakpoint on line 23.

• Question: can you break and then continue again? Yes. For example, if
you set a breakpoint in the middle of a loop, continue will stop on the
next iteration of the loop where the next breakpoint is according to the
logic of your program.

• Question: can you start execution of your program at different points?
No.

4 Sorting (25:00–65:00)

4.1 Bubble Sort

• Although we as humans may have some intuition as to how to sort a list of
numbers, we need to be able to translate that intuition into instructions
that the computer can understand.

• For this demonstration, we ask 8 volunteers to come on stage and hold
pieces of paper with the numbers 1 through 8 in a somewhat jumbled
order. If we were to represent these 8 numbers in a computer program,
we’d probably use an array rather than 8 separate variables. As a result,
the computer itself can’t see the values of all the variables at the same
time. This is an important consideration for us as we design our sorting
algorithms.

• Our first attempt at sorting involves starting at the beginning of the array
and examining the first two numbers. If the left number is greater than
the right number, we know intuitively that they are out of place, so we
swap them. Then we iterate to the next two numbers and compare them
in the same way.

6

Computer Science 50
Fall 2010
Scribe Notes

Week 3 Wednesday: September 22, 2010
Andrew Sellergren

• Iterating through the array obviously requires a loop. But because the
array most likely won’t be sorted after walking through it once, we need
to have a second outer loop that tells us to keep walking through the
array as many times as necessary until it is sorted. How many times will
that outer loop execute? Intuitively, we can reason that it will execute 8
times (the length of the array) because if the lowest number is in the last
position in the array and we only swap it once on each iteration of the
loop, it will take 8 iterations to make the 8 swaps that are necessary to
put it in the correct position at the beginning of the array.

• On the fourth iteration of our outer loop, we make a single swap and see
that the entire array is sorted. However, we only know this because we can
see all 8 numbers at once. Because the computer can’t see all 8 numbers
at once, it doesn’t know that the array is sorted, so it must keep iterating.
If we make even one swap while iterating through the array, the computer
assumes that we’re not done sorting. Only when we iterate through the
array and make no swaps will the computer know that the array is sorted.1

• How many steps does this algorithm involve? In the best case, the array
is already sorted, so we iterate through it once, make no swaps, and we’re
done. We’ll count that as 8 steps, one for each number in the array. In
the worst case, it’s going to take 64 steps since the outer loop will execute
8 times and each iteration of the loop takes 8 steps to walk through the
array.2

• To generalize, this algorithm takes n steps in the best case and n2 steps in
the worst case, where n is the length of the array we’re sorting. Although
this doesn’t seem that bad, imagine if n is not 8, but 10000. In that case,
this algorithm might consume a lot more resources than we’d like it to.

• Because of the way numbers bubble up from one end of the array to the
other, this algorithm is called bubble sort.

4.2 Selection Sort

• Beginning again with an unsorted array, we start walking from left to right,
this time looking for the smallest number in the array. When we find the
smallest number so far, we store its location in a temporary variable.
Whenever we find a number that’s smaller, we update the temporary
variable to store the new location.

• When we reach the end of the array, we make a single swap: the smallest
number to index 0 in the array. On the second pass through the array,

1This assumes that we don’t have some very complicated conditions being checked which
actually might enable us to stop iterating even if we’ve made a swap.

2Actually, if you’re keeping track, we only need to make 7 swaps to move 1 from the end
of the array to the beginning, but we have to iterate through the array once more and make
no swaps in order to know that it is sorted.

7

Computer Science 50
Fall 2010
Scribe Notes

Week 3 Wednesday: September 22, 2010
Andrew Sellergren

we’ll start walking from index 1 in the array since we already know that
the number in index 0 is in the right place. This time when we find the
smallest number in the array, we swap it into index 1. The third pass
through the array will swap a number into index 2, and so on.

• Instead of swapping the smallest number with the leftmost number, we
could pull the smallest number out of the array and then shift the other
numbers to the right. However, this would be unnecessarily expensive, as
swapping only takes 1 step and shifting would take more than 1 step.

• How many steps does this algorithm take? Although we made some opti-
mizations whereby we started at index 1 on the second pass through the
loop and at index 2 on the third pass through the loop, this algorithm still
takes roughly n2 steps in the worst case. To find the first smallest number,
it took us n steps because we walked through the entire array once. To
find the second smallest number, it took us n−1 steps because we started
from index 1. So the whole algorithm will take n + n− 1 + n− 2. . . . This
series sums to n(n+1)

2 and although that technically means the algorithm
takes 1

2n2 + 1
2n steps, we throw away all but the highest-order term (the

one with the largest exponent) and all of the coefficients because as n gets
very large, they have negligible effect on the result.

• What about the best-case scenario? In fact, it still takes n2 steps because
the computer has no way of knowing on any iteration through the array
that the smallest number is already in the correct position.

4.3 Big O Notation and Runtime

• Computer scientists use what’s called big O notation to denote the worst-
case runtime of an algorithm. We say that both bubble sort and selection
sort are in O(n2). To describe the best-case runtime, we refer to Ω and
say that bubble sort is in Ω(n) while selection sort is in Ω(n2). If the
best-case and worst-case runtime are the same for an algorithm, we use
Θ. We say, for example, that selection sort is in Θ(n2).

• To see these sorting algorithms in action, check out this demo. Unfortu-
nately, it doesn’t work properly on Macs, so it’s best to view it on a PC.
In this demo, longer bars represent larger numbers. Even though swaps
are being made pretty quickly and the longer bars are bubbling to the
right, the demo takes a long time to complete. This gives you a pretty
good idea that bubble sort is actually quite slow. Likewise, selection sort
feels pretty slow although it seems slightly faster than bubble sort.

• Take a look at the graphs below of n versus n/2 versus log n:

8

http://maven.smith.edu/~thiebaut/java/sort/demo.html

Computer Science 50
Fall 2010
Scribe Notes

Week 3 Wednesday: September 22, 2010
Andrew Sellergren

From these graphs, we can see that if we had 9 numbers in our array
instead of 8, it would take us one additional step in the best-case scenario
using bubble sort.

• On the first day of class, when we counted all of the students in Sanders
Theater two at a time rather than one at a time, we were cutting the
runtime in half. This is what the n/2 graph represents. With our final
algorithm, we got half of the class to sit down on each iteration, meaning
we were effectively cutting the problem in half with each step. This is an
extremely compelling algorithm, as its runtime is log n. As you can see,
the graph has a very gradual slope, meaning that the number of steps it
takes to complete increases only very slightly as the size of the problem
increases.

• Unfortunately, we’ll never be able to sort n numbers in log n time. This
is because no matter how we sort, we’re going to have to make at least n
comparisons, that is, walking through the array at least once, in order to
verify that it’s sorted.

5 Recursion (65:00–71:00)

5.1 sigma1.c

• In general, if an algorithm repeats itself multiple times and only the size of
the problem changes on each iteration, we can use recursion to implement
it. A recursive function is one that calls itself. Of course, we’ll need to
make sure that at some point our program breaks out of this recursion
lest that function call itself infinitely and we run out of memory.

9

Computer Science 50
Fall 2010
Scribe Notes

Week 3 Wednesday: September 22, 2010
Andrew Sellergren

• Take a look at sigma1.c which implements a non-recursive function to
sum up the numbers 1 through n:

/**
* sigma1.c
*
* Computer Science 50
* David J. Malan
*
* Adds the numbers 1 through n.
*
* Demonstrates iteration.
***/

#include <cs50.h>
#include <stdio.h>

// prototype
int sigma(int);

int
main(void)
{

// ask user for a positive int
int n;
do
{

printf("Positive integer please: ");
n = GetInt();

}
while (n < 1);

// compute sum of 1 through n
int answer = sigma(n);

// report answer
printf("%d\n", answer);

}

/*
* Returns sum of 1 through m; returns 0 if m is not positive.
*/

10

Computer Science 50
Fall 2010
Scribe Notes

Week 3 Wednesday: September 22, 2010
Andrew Sellergren

int
sigma(int m)
{

// avoid risk of infinite loop
if (m < 1)

return 0;

// return sum of 1 through m
int sum = 0;
for (int i = 1; i <= m; i++)

sum += i;
return sum;

}

Here we use a do while loop to prompt the user for a positive integer and
to keep prompting him if he doesn’t provide one. In our sigma function,
we do a sanity check to make sure the number it’s been passed isn’t less
than 1 and then we iterate up to the number the user provided, summing
along the way.

• If we compile and run sigma1, we see that it works perfectly correctly.
But, interestingly, we can implement the same functionality in an entirely
different way using recursion.

5.2 sigma2.c

• sigma2.c solves the same summation problem as before, but does so using
a recursive function:

/**
* sigma2.c
*
* Computer Science 50
* David J. Malan
*
* Adds the numbers 1 through n.
*
* Demonstrates recursion.
***/

#include <cs50.h>
#include <stdio.h>

// prototype
int sigma(int);

11

Computer Science 50
Fall 2010
Scribe Notes

Week 3 Wednesday: September 22, 2010
Andrew Sellergren

int
main(void)
{

// ask user for a positive int
int n;
do
{

printf("Positive integer please: ");
n = GetInt();

}
while (n < 1);

// compute sum of 1 through n
int answer = sigma(n);

// report answer
printf("%d\n", answer);

}

/*
* Returns sum of 1 through m; returns 0 if m is not positive.
*/

int
sigma(int m)
{

// base case
if (m <= 0)

return 0;

// recursive case
else

return (m + sigma(m-1));
}

Our main method is identical to that of sigma1.c. Of course, we don’t
want to induce an infinite loop by implementing a function which calls
itself over and over again indefinitely. That’s what the base case is for—
to provide an exit. The rest of the magic takes place in the recursive case,
in which sigma is called again. Think about it: if we want the sum of
m, we can reduce that to be the sum of m and all the numbers less than
m− 1. That sum, then, is m− 1 plus all the numbers less than m− 2. So
each time we call sigma, we’re passing it one number less than our current
number. Only once the number we pass to sigma is less than or equal to

12

Computer Science 50
Fall 2010
Scribe Notes

Week 3 Wednesday: September 22, 2010
Andrew Sellergren

0 do the functions start returning and the answer starts bubbling up.

6 A Teaser (71:00–72:00)

• As a teaser for next time, check out this demo which allows you to compare
sorting algorithms side by side. Try running selection sort and bubble sort
against merge sort and see which one wins!

13

http://cg.scs.carleton.ca/~morin/misc/sortalg/

	Announcements and Demos (0:00--4:00)
	From Last Time (4:00--6:00)
	Debugging (6:00--25:00)
	Sorting (25:00--65:00)
	Bubble Sort
	Selection Sort
	Big O Notation and Runtime

	Recursion (65:00--71:00)
	sigma1.c
	sigma2.c

	A Teaser (71:00--72:00)

