
Computer Science 50
Fall 2010
Scribe Notes

Week 4 Monday: September 27, 2010
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–8:00) 2

2 From Last Time (8:00–14:00) 2

3 Problem Set 3 (14:00–19:00) 3

4 More Sorting (19:00–30:00) 3

5 Merge Sort (30:00–52:00) 4

1



Computer Science 50
Fall 2010
Scribe Notes

Week 4 Monday: September 27, 2010
Andrew Sellergren

1 Announcements and Demos (0:00–8:00)

• This is CS50.

• 1 new handout.

• Now that you’re officially in CS50, you should let everyone know it by
wearing apparel from the CS50 Store!

• Check out this receipt for a real world example of floating-point impreci-
sion.

• Version 3 of HarvardEvents is slicker than ever! If you’ve ever wanted to
search or browse for events on campus, especially ones with free food, this
is the tool for you. You can even add your own campus group’s calendar
by clicking “add calendar” in the top left corner underneath the logo.

• Even Barack Obama knows that bubble sort is suboptimal! Of course,
there’s no perfect way to sort 1 million 32-bit integers, as Eric Schmidt
asked, because there are always tradeoffs between memory and runtime.
In the real world, as David experienced while writing Perl scripts to detect
worms across several gigabytes of data, a script that takes 10 to 15 minutes
to write might take 8 hours to execute.

• Microsoft is hosting a NERD Party this Thursday!

• Asus is releasing a new tablet soon. Find out here how you can play with
one before it goes public.

2 From Last Time (8:00–14:00)

• Selection sort, whereby the smallest number is found while traversing an
array and is swapped to the beginning of the array, seemed like a rea-
sonable alternative but bubble sort but turned out to be in O(n2) just as
bubble sort was.

• Big O notation is used to characterize the worst-case running time of an
algorithm. In the context of sorting, the worst case is when the array is
in reverse order.

• Because selection sort takes no aggregate view of the entire array, its best-
case running time is also n2. Thus, we say that selection sort is in Ω(n2).

• Thankfully, as this demo illustrates, merge sort presents a faster alterna-
tive to both selection sort and bubble sort.

2

http://store.cs50.net
http://img.thedailywtf.com/images/200902/errord/DSC00669.JPG
http://events.cs50.net
http://www.youtube.com/watch?v=k4RRi_ntQc8
http://www.eventbrite.com/event/845776741/
http://cs50.net/asus
http://cg.scs.carleton.ca/~morin/misc/sortalg/


Computer Science 50
Fall 2010
Scribe Notes

Week 4 Monday: September 27, 2010
Andrew Sellergren

3 Problem Set 3 (14:00–19:00)

• The first part of this problem set will have you implement one of the
sorting algorithms we’ve looked at so far.

• The second part will have you finish building out The Game of Fifteen.
Whereas for the previous problem sets, you started from scratch, for this
problem set, you will start with distribution code, a skeleton framework
of files and functions. Our goal is to get you accustomed to designing
larger programs and working with someone else’s code. HarvardEvents, for
example, makes use of several JavaScript libraries, including YUI, which
has a built-in calendar widget so that you don’t have to implement it
yourself.

• Before you begin coding, play around with the staff solution. The program
takes a single command line argument, the dimensions of the board, and
proceeds to print the game board with a _ representing the blank tile.
You are then continually prompted for a tile to move and you can play
the game as you normally would.

• In the Hacker Edition, you are tasked with implementing the game as well
as a solver mode. When asked for a tile to move, you should be able to
enter GOD and the tiles will start moving automatically until the game is
solved.

4 More Sorting (19:00–30:00)

• Last time, we sorted a list of numbers using a few different algorithms.
This time, to emphasize that sorting boils down to a finite number of
comparisons, we’ll be sorting 8 cups by their weight using a standard
balance scale.

• With a list of numbers, we as humans can observe the entire list at once
and immediately identify the smallest number. The computer, however,
cannot identify the smallest number without walking through the entire
list once and making n − 1 comparisons. With a series of differently
weighted cups, human and computer are evenly matched. Neither a human
nor a computer can glance at the series of cups and know a priori which
is the lightest. Thus, we must use the balance and compare 2 cups at a
time, making n− 1 comparisons before we find the lightest cups.

• When we counted the number of students in Sanders and searched the
phonebook for a specific name, we achieved a result most efficiently when
we used a “divide and conquer” approach. So it is with sorting.

• Let’s reduce our sorting problem to a more manageable size. We have 8
cups. If we divide them into two groups and focus on one group, we’ve
immediately cut the problem in half. If we divide the cups twice more,

3

http://en.wikipedia.org/wiki/Fifteen_puzzle


Computer Science 50
Fall 2010
Scribe Notes

Week 4 Monday: September 27, 2010
Andrew Sellergren

we’re left with a single cup. When we consider this single cup by itself, it
is already sorted, so we’re done with the first “divide” step. In fact, the
other cup that we singled out, when considered by itself, is also sorted. In
order to create a list of size 2, however, we need to merge these two sorted
cups. This is where the first comparison is made. We put the lighter cup
on the left and the heavier cup on the right and we’re done sorting a list
of size 2.

• To backtrack a bit, we began with a list of size 8 and divided it into two
lists of size 4. One of those lists of size 4, we divided into two lists of size
2. Finally, we divided one of those lists of size 2 and then merged it back
together in sorted order. Now let’s consider the other list of size 2.

• Repeating the process as before, we divide this list of size 2 into two sep-
arate single cups which, when considered individually, are sorted. When
we merge these single cups back together, we make a single comparison to
create a sorted list of size 2.

• We now have two sorted lists of size 2. To merge them, we’ll need to walk
through both, comparing cups along the way. Let’s call the lists A and
B for clarity’s sake. The first cup in list A is lighter than the first cup in
list B, so we place it farthest to the left. Then we compare the second
cup in list A to the first cup in list B. The first cup in list B is lighter, so
we place it second farthest from the left. Finally, the second cup in list A
is lighter than the second cup in list B, so we place it third farthest from
the left. The second cup in list B is the heaviest in this list of size 4, so
we place it at the rightmost.

• Although this algorithm may seem confusing and slow, we’ll soon find that
it is much faster than either selection sort or bubble sort. We’ll also see
that it’s actually quite simple and elegant to implement using recursion.

5 Merge Sort (30:00–52:00)

• Let’s summarize in pseudocode the cup-sorting algorithm we used above:

On input of n elements:
If n < 2
Return.

Else
Sort left half of elements.
Sort right half of elements.
Merge sorted halves.

When we say “Sort left half,” what we really mean is to start this entire
algorithm over using a list of size n/2 rather than the original list of size
n. You can think of all of the lines of pseudocode above as belonging to

4



Computer Science 50
Fall 2010
Scribe Notes

Week 4 Monday: September 27, 2010
Andrew Sellergren

a function called Sort which calls itself if it is passed 2 or more elements.
The fact that this algorithm calls itself is what makes it recursive.

• The n < 2 is the base case of this recursive algorithm. To prevent it from
looping infinitely, we check if there are fewer than 2 elements in the list.
If n < 2, then there is only a single item in the list and, as we said before,
a single item considered by itself is already sorted.

• Consider the following array: 4, 2, 6, 8, 1, 3, 7, 5. Using merge sort, we’re
going to recursively chop it in half until we’re left with two lists of size
one: 4 and 2. Each of these lists is already “sorted,” so now we need to
merge them. How do we merge? Well, 2 is less than 4, so we want to put
the 2 list before the 4 list. Where will we store these? In reality, we’re
going to need more memory to store the sorted total list.

• Now that 2 and 4 are in order, we step back for a second. 2 and 4 comprise
the left half of a list of four: 4, 2, 6, 8. So now that we’ve sorted the left
half of this list, we need to sort the right half, namely 6, 8. Again, we
divide this list of length two into two lists of length one: 6 and 8. Then,
we merge them, putting 6 before 8.

• One of the key takeaways to keep in mind with this algorithm is that we’re
only looking at each number once. Because it makes fewer comparisons
than bubble sort or selection sort, merge sort is much faster.

• Now, again we’re at the merging step. The left half is 2, 4 and the right
half is 6, 8. Let’s point our left hand at the first element of the left half
and our right hand at the first element of the right half. 2 < 6, so we put
2 in first. Now we’ll advance our left hand one step so that it’s pointing
at 4. Our right hand is still pointing at 6 because we haven’t merged that
number yet. We compare 4 and 6 and then put 4 into our sorted array.
Then we put 6 and 8 in because there’s nothing to compare them against.

• At this point, we’ve completed the very step in our first call to merge sort:
we’ve sorted the left half of the entire original list. Now we’ll sort the right
half: 1, 3, 7, 5.

• Cutting out a few of the intermediate steps, we end up with two sorted
lists of size two: 1, 3 and 5, 7. When we merge them we end up with 1,
3, 5, 7. Finally, we’ll merge this right half with the original left half, 2,
4, 6, 8. Obviously, we’ll end up with 1, 2, 3, 4, 5, 6, 7, 8. We’ll do so by
iterating over both lists comparing the current left number to the current
right number, selecting the smaller, and advancing to the next number in
the list we just took a number from.

• Each merging step will take n steps because we must iterate over both lists
of size n/2. But what about the division steps? We executed log n divi-
sions, so we must execute log n merges. Our total merge sort algorithm,
then, is in O(n log n). This is an improvement on O(n2)!

5



Computer Science 50
Fall 2010
Scribe Notes

Week 4 Monday: September 27, 2010
Andrew Sellergren

• Let’s try to represent merge sort’s running time, T (n), formulaically:

Let T (n) = running time if list size is n.

T (n) = 0 if n < 2

T (n) = T (n/2) + T (n/2) + O(n) if n > 1

That is, we have to sort the left half, which takes T (n/2), sort the right
half, which takes T (n/2), and merge, which takes O(n)!

• Ex: Suppose we want to find T (16):

T (16) = 2T (8) + 16

T (8) = 2T (4) + 8

T (4) = 2T (2) + 4

T (2) = 2T (1) + 2

T (1) = 0

T (16) = 2(2(2(2(0 + 2) + 4) + 8) + 16) = 64

We add 16 in the first step because it takes 16 steps to merge both lists
of 8. Eventually we boil down to T (1), which is 0 because a list of size
one is already sorted. Does our final result, 64, agree with our original
determination of O(n log n). Well, 16× log 16 = 64, so yes. Compare this
to O(n2), which would take 162 = 256 steps. Already we’re reaping the
benefits.

• Have a listen to What different sorting algorithms sound like! They all
sound like Pac-Man to me.

6

http://www.youtube.com/watch?v=t8g-iYGHpEA

	Announcements and Demos (0:00–8:00)
	From Last Time (8:00–14:00)
	Problem Set 3 (14:00–19:00)
	More Sorting (19:00–30:00)
	Merge Sort (30:00–52:00)

