
CS50 Walkthrough 4
Marta Bralic

To Do
 distribution code

 ncurses

  move cursor

 allow changing user-added numbers,
but not original ones.

  allow replacement of blank with
number

  invalid move?

  won?

Distribution Code +
Debugging
  sudoku.h

  sudoku.c
  600 lines!

  2 window gdb debugging

ncurses

 sudoku.h

 Allows you to change colors,
appearance of your program.
 Always have foreground and

background color.

 Allows you to have a cursor.
 User interface
 Updating board

Moving the cursor

 Switch statements!

switch (test)

{

 case x:

 case y:

 //Do this for cases x and y

 default:

 //Do this otherwise

}

How to refer to keys/cursor?
 Keys

 KEY_UP
 KEY_DOWN

 KEY_LEFT
 KEY_RIGHT

 Cursor

 g.board[g.y][g.x] is spot on board where
cursor is

 g.y is cursor’s y position
 g.x is cursor’s x position

  showcursor()

Don’t replace original or
move when won!
 Keep track of locations originally

there.

 Before moving, ensure that it is not an
original number and that game is not
won
 make a copy of the board at start.
 If not a 0 in original board, don’t

change it!

Replace blanks/non-original
numbers
 function, takes one argument ch (ascii)
 if ch is 0, . , KEY_BACKSPACE, KEY_DC
 set that spot in the board to 0

 if ch is numerical between ‘1’ and ‘9’
 set that spot in the board to the

values 1 through 9, not the ascii 1
through 9
 like in Caesar, subtract ‘0’

 draw_numbers()

Invalid move!

 Check all the values in that row and
column for the value in the tile.

 Check each box by starting top left,
and moving 2 across, and 2 down
looking for same value as
g.board[g.y][g.x], but “skip”
g.board[g.y][g.x]

Won?

 Go to each box
 Ensure no 0’s
 Check for errors
 if no zero, and no errors,

showbanner

  If not won, return to your box!

