Scott Crouch
Fall 2010, CS50

had to
share g Photo from the Austra
ian

aVing such a great time,

Outback We're h,

Cheers,
Erin

Tap Top

Auvdiobooks

I Gonius Mixes

Auditorium (festu...

Dinner Party

Favorites
Music Videos
Relaxing Music
Road Trip

Some of Everything

eveloping Apps for =
OS: iPhone, iPad and Bl W N

Pod Touch

Racio Wars

Requirements:

— Mac running OS X Leopard or
greater

— Enrollment in Harvard University’s
Student Developer Program

- Xcode 3.2.4 and iOS SDK 4.1
Available for download from
developer.apple.com

What if | don’t have a Mac

No Worries! T -

CS 50 will get you access to labs with the SDK
Installed.

For Access, email me at:
scrouch@college.harvard.edu

Development Tools

Xcode 3.2.4 IDE

Interface Builder

Instruments

eeeeeeeee

« Select the type of A= mm =
app you want to create i — mmee e
i s BN
- Keep in mind the data = S e

storage you will need.

If you think you’ll be
using databases, it's a

Split View-based
Application

Window-based
Application

~
aaaaa

good idea to select the Core Data box.

Xcode

Groups & Files

‘ °
v [CS50 Seminar TabBar App B §% CoreGraphics.framework o
¥ | Classes (A CS50 Seminar TabBar App.app &)
E FirstViewController.h :—“] CS50_Seminar_TabBar_App-Info.plist (]
3’] FirstViewController.m a CS50_Seminar_TabBar_App_Prefix.pch
E’] CS50_Seminar_TabBa: E‘] CS50_Seminar_TabBar_AppAppDelegate.h
E’] CS50_Seminar_TabBa: [CS50_Seminar_TabBar_AppAppDelegate.m v 4
|| Other Sources g FirstView.xib o
1] CS50_Seminar_TabBa | FirstViewController.h
E’] main.m | FirstViewController.m v ™~ b
¥ |Resources &% Foundation framewnrlk . v
g FirstView.xib <4 » [FirstViewController.h:1 3 <No selected symbol> % U, ™ |Col#, /W |2
%] SecondView.xib /! |
ﬁ]\ <ion . few x', // FirstViewController.h L
_ﬁj MainWindow.xib] // (€S50 Seminar TabBar App
=] CS50_Seminar_TabBa: I/
» [] Frameworks Z Ereatgdhgyzgigtt |'(lilrguch onN11/6/10;\u ont .
opyrig __MyCompanyName__. rights reserved.
» (| Products /7
> @ Targets
| 2 Q Executables #import <UIKit/UIKit.h>
v Find Results
» 14 Bookmarks @interface FirstViewController : UIViewController {
>4 scMm
@ Project Symbols }
» (@ Implementation Files @end
» (3] Interface Builder Files

Xcode Basics

Breakpoints

Creating new files

Changing the project settings
Changing your base SDK

Configuration
— Debug

— Distribution
— Release

Debugging in Xcode

« With break points, we can debug our
code!

« Debug Console

« Also, NSLog statements
— NSLog("we just reached 1ine 48,259!");

Using Instruments to Analyze Your App

* We can use instruments to look at memory
usage (RAM), find memory leaks and analyze
our graphics component.

Objective C - 2.1
Cocoa Touch

Keywords

« Springboard
— The main home screen App of iOS which
controls the launching and terminating of
Apps.

 Cocoa Touch
- The programming interface that handles
the user interaction and multi-touch events

Model-View-Controller Paradigm

Every Application has views, these views are
controlled by view controllers.

Tab bar controller view

Custom content

Tab bar

.m and .h files

* .h files are header files are for:

— Declaration of objects that need to be synthesized

— @property directives for objects that need to
synthesized.

- Declaration of Function Prototypes

« .m files are for:

- Synthesis of object variables
- Implementation of pre-defined methods and custom
methods.

Basic Data Types in Objective C

int: standard integer

float: store decimal numbers

double: store decimal numbers > float
char: standard character

BOOL: TRUE/FALSE or YES/NO

id: since objective-c is object oriented,
we need a way to reference an object.
Each object has an id.

Declaring Objects in Objective — Cin .h
files

#import <UIKit/UIKit.h>
Class Name Parent Class Name
] i

g \ [\
@interface MainViewController : UIViewController {

UIButton *buttonl;
UIImageView *1imageView;

CGFloat taplLocation;
CGSize originallmageSize;
CGSize newlImageSize;

Boolean rotated;

@property directive

@property(nonatomic, retain) UIButton *buttonl;
@property(nonatomic, retain) UIImageView *imageView;

@property(nonatomic, readwrite) CGFloat taplLocation;
@property(nonatomic, readwrite) CGSize originallmageSize;
@property(nonatomic, readwrite) CGSize newlImageSize;

@property(nonatomic) Boolean rotated;

@end

Syntax: @property (<propertynamel>, <propertyname2>,
etc.) <Object Type> <Object Name>;

nonatomic, atomic, retain and
readwrite properies

nonatomic: most widely used property, this
give the application complete access to this

this object.

atomic: sort of like nonatomic except there
are restrictions in place to prevent against
simultaneous updates.

retain: very similar to malloc

readwrite: allows accessing and mutating of
an object

Some Tricks for @property

. All Ul Elements should be under the @property(nonatomic,
retain) directive

. Objects like CGSizes, CGFloats, NSNumbers (which are all
numbers) should be under the @property (nonatomic,
readwrite) or @property(nonatomic, readonly) directive

. Booleans should just be under the @property(nonatomic)
directive

. Objects that you want to copy should be created under the
@property (nonatomic, copy) directive

Synthesizing Objects in .m files

Zimport "MainViewController.h"
@implementation MainViewController

@synthesize buttonl,
imageView,
tapLocation,
originallImageSize,
newlmageSize,
rotated;

Methods in Objective-C
One Parameter

Syntax:

- (<return type>) <method name>: (<parameter
type>) <parameter name>

Example:

— () getSize: (UllmageView *) imageView {}

Methods in Objective-C
Two or More Parameters

Syntax:

- (<return type>) <method name 1>: (<parameter
1 type>) <parameter 1 name> <method name 2>:
(<parameter 2 type> <parameter 2 name>

Example:

- (Ytableview: (MGExpandingTableview
*)tableview numberofchildRowsInSection:
(NSInteger)section {}

Calling Methods

Syntax:

[<object> <method name>: <parameter>];

Example:

[.navigationController pushviewController:
nextViewController animated: 1;

Built in Methods

—-(void) loadView {}:

Create a view, add Ul elements without
an Interface Builder File (nib)

—-(void) viewDidLoad {}:

Add elements to a view after the view
has been loaded. Usually used with a
nib but not always.

Adding a Ul Element

UlButton FTW!

UIButton *cs50Button = [UIButton buttonWithType:UIButtonTypeRoundedRect];

[cs50Button setBackgroundImage: [UIImage imageNamed:@"testImage.png"]
forState:UIControlStateNormal];

csS50Button. frame = CGRectMake(10, 10, 90, 90);

[cs5@0Button addTarget: self
action: @selector(launchCS50ButtonViewController:)

forControlEvents: UIControlEventTouchUpInside]

[self.view addSubview: cs5@Button];

Adding a Ul Element

Let’s now try adding a scroll view!

[[UIScrollView alloc]
initWithFrame: CGRectMake(9,0,320, 480)];

UIScrollView *csS5@ScrollView

cs50ScrollView.contentSize = CGSizeMake(320, 1000);
cs50ScrollView.scrollsToTop = YES;
cs50ScrollView.bounces = YES;
cs50ScrollView.zooming = YES;
cs50ScrollView.maximumZoomScale
cs50ScrollView.minimumZoomScale

= 2.0:
= 0.5;

[self.view addSubview:scrollView]:;

Creating a Ul with
Interface Builder

Interface Builder

Allows you to drag and drop Ul elements

Very inflexible: Once you have placed the

element in IB, there is no way to override it in
code.

Hard-coding Ul Elements is better style and
allows full customization.

IB Outlets

When you drag and drop an item in interface
builder, you need to connect it to an outlet in one
of your view controllers.

In the .h file:
|IBOutlet *button;

(nonatomic, retain) IBOutlet UIButton
*button;

IBActions

Sort of like IBOutlets except for methods. These
need to be connected as well.

In the .h file:
- (IBAction) hitTheButton;

In the .m file:
your method implementation

HelloWorldXIB.xcodeproj

Memory Management

* You have to do this yourself

* |f you alloc or retain an object like a button or
an image view, you must release it in the
dealloc function.

— [<object name> release];

iOS has a flaw! The counter retainCount which
is built in is unreliable and will not report
correct values.

Data Structures and Core Data

Data Storage

Just like in C, you have Arrays (well an NSArray)

You also have NSSet, NSDictionary and
NSMutableArray.

*myArray = [[NSArray alloc]
1n1twithObjects: @°Hello”, @"My”,
@”’Name”, @“Is”, @”Scott”];

Core Data

* |f you're using a data base (most likely SQLite),
yvou’ll need the Core Data wrap around.

* Revolves around three concepts
— Managed Object Model
— Managed Object Context
— Persistent Store Coordinator

Managed Object Model

Think of this as a database schema:

Your objects are known as Entities and these
entities have information called Attributes

To set up your Managed Object Model, you
will create a .xcdatamodelfile

< » [} MoonGuide.xcdatamodel %

xcdatamodel

<No selected symbol> %

v

No Selection

-

Trip

¥ Attributes
startDate
title

¥ Relationships
days

[Entity A Abs Class Property A|Kind ‘Type or Destination
Bookmark] Book
Day O Day
Listing () Listi
Map) Map
Page] Page
Trip O Trip
TripBookmark () TripB
S|l=|w T =
i Page)
[Listing) ¥ Attributes (. Amibu::p
¥ Attributes body D
address pagelD n_'nap
" title
hours title ¥ Relationships
phone ¥ Relationships age
review bookmark I e
website map
¥ Relationships parentpage
sjsubpages \
P Day
' Bookmark (" TripBookmark ¥ Attributes
¥ Attributes ¥ Attributes date
index index notes i+
¥ Relationships ¥ Relationships ¥ Relationships
page *_'—>> bookmark "!p
tripBookmarks day <e——>{tripBookmarks
k[]a[0] €

RIS

100%

=

Managed Object Context

* Most Important of the three!

* We will call methods on the Managed Object
Context to access information from our

database

-(NSManagedObjectContext *)managedObjectContext {

if (managedObjectContext != nil) {
return managedObjectContext;

MGAppDelegate *appDelegate = (MGAppDelegate *)[[UIApplication sharedApplication] delegate];

managedObjectContext = [appDelegate managedObjectContext];

return managedObjectContext;

}

Saving with Managed Object Context

Presuming you have modified/added an object
and it corresponds to your database, you just
have to enter these lines to save the state of
that object.

NSError *error = nil;

if (![self.managedObjectContext save:&error]) {
NSLog(@"Error saving after editing Trip: %@, %@", error, [error userInfo]);

}

Persistent Store Coordinator

Think of it as the guy who opens the apple store every
morning, he doesn’t sell the iPhones, but the store has
to be open for them to be sold.

This sets up the names and locations of the databases.
Any Managed Object Context that saves an object goes
through the Persistent Store Coordinator.

The App Delegate

* The App Delegate is a class in EVERY iPhone
App. It handles the launching of the app.

The Managed Object Model, Context and

Persistent Store Coordinator need to be set up
here.

P Coudy Few SPowers M Cloudy S M Sure

77°/52° 76°/5

~a L

69°/48° 65°/47° 67°/47° 72°/49°

an .

The Basics of an App

* Most every app (though not all) has the
following:

- Tab Bar
- Navigation Bar
- Status Bar

The Tab Bar

« Adds Stability and Organization
— Width: 360 pts Height: 49 pts

 C(Classed under the
— UlTabBarController Class

Properties:
viewControllers (NSArray)
customizabeViewControllers
(NSArray)
delegate
moreNavigationController
selectedViewController

Creating a Tab Bar Application

You can do this two ways, with by selecting a Tab
Bar App at the start of Xcode. Or by hard-
coding it in yourself. Should be done in App
Delegate!

UITabBarController xtabBar = [[UITabBarController alloc] init]:
tabBar.frame = CGRectMake(320, @, 320, 49);

NSArray *viewControllers = [NSArray arrayWithObjects: vC1l, vC2, nil];
[tabBar setViewControllers:viewControllers];

[window addSubview: [tabBar view]];

The Navigation Bar

« Adds hierarchical navigation to your

app.
- Width: 360 pts Height: 44 pts

Stores View Controllers on the stack

*Classed under the:
—-UINavigationController

Properties:
navigationBar
viewControllers (NSArray)
topViewController
visibleViewController

Table View Apps

Belongs to the
UlTableViewController class

Can be customized for height,
width, images and multitudes
of text.

Can be created by clicking Table
View App when Xcode launches
or by hard coding a table.

Hard-Coding a Table View App

Let’s Start in the .h file!

@interface CSS50TableViewController : UITableViewController
<UITableViewDelegate,
UItableViewDataSource> {
UITableView *tableView;
}

@property (nonatomic, retain) UITableView *tableView;

Table View in the .m file

A few methods need to be implemented here,
and I'll leave it up to you guys to figure out
how to implement them

1

4

Table View Methods to be
Implemented

. —(NSInteger)numberofSectionsInTableview:
(UITableview *)tableview

. —(NSInteger)tableview (UITableview
*)tableviewnumberofChildrRowsInSection:

(NSInteger)section

. - (UITableviewCell *)tableview:
(UITableview*)aTableview
childCellForRowAtIndexPath: (NSIndexPath
*)indexPath

. — (void)tableView:(UITableView *)tableView
didSelectRowAtindexPath:(NSIndexPath *)indexPath

ModalViewControllers

Basically popup controllers! They can have
anything in them (tableview, etc.)

[self presentModalViewController: <view
controller name> animated: <boolean>];

[self dismissModalViewController: <view
controller name> animated: <boolean>];

UlGestureRecognizers

This is an awesome class! Allows for all sorts of
cool multi-touch events.

Example: Swipe-Left

- (IBAction)handleSwipeLeft: (UIGesturerRecognizer
*)sender{}

Handling Input from Sensors

Accelerometer:

- (void) accelerometer: (UIAccelerometer
*)accelerometer didAccelerate: (UIAcceleration
*)acceleration {}

Camera:

Try creating a UllmagePickerController in a
modalViewController.

Developing for iPad

Awesome! iPad development is a lot of fun. All
of the same code, view controllers and
schemes apply. Although we have a new type
of application

The Split View Controller App:

Developing Games

Open GL ES Core Animation
penGL|ES

Core Audio

Finally, Some tips

Make it intuitive!

- No one wants to see a thousand buttons or a
very convoluted hierarchy

Have one clear goal for your app!

- Don’t get bogged down in making it do too
many different things.

Thanks for
Coming!

Images credit of apple.com,
hopefully they don’t mind I’'m using
them

