
Computer Science 50
Fall 2011
Scribe Notes

Week 3 Wednesday: September 21, 2011
Andrew Sellergren

Contents

1 Big O Notation (0:00–16:00) 2

2 Search (16:00–32:00) 4

3 Sort (32:00–58:00) 4
3.1 Selection Sort . 4
3.2 Bubble Sort . 5
3.3 Omega . 6
3.4 Simulations . 6

1

Computer Science 50
Fall 2011
Scribe Notes

Week 3 Wednesday: September 21, 2011
Andrew Sellergren

1 Big O Notation (0:00–16:00)

• Recall from Week 0 the phonebook demo. We learned that successively
tearing the phonebook in half was much more efficient than turning page
by page in order to find Mike Smith. This is the difference between a
logarithmic and a linear approach.

• We also looked at an algorithm for counting the number of students in
Sanders:

1. stand up and think of the number 1

2. pair off with someone standing, add your numbers together, and
adopt the sum as your new number

3. one of you should sit down; the other should go back to step 2

Here again, the logarithmic approach, the divide-and-conquer approach,
in which half of the students in Sanders sat down on each iteration, proved
much faster.

• Let’s try another algorithm that uses the logarithmic approach in order
to find the tallest person in the orchestra section:

1. stand up if in orchestra section

2. pair off with someone standing; stay standing if you’re taller, sit down
if you’re shorter; break tie randomly

3. if still standing, go to step 2

Renzo is the tallest person in the orchestra section today! Even if we
had started with as many as 4 billion people, it would have only taken 32
steps to find the tallest person using this algorithm (232 ≈ 4 billion). The
alternative, the linear approach, would take 4 billion steps.

• We can visualize this difference in runtime for these algorithms using the
following graph:

2

Computer Science 50
Fall 2011
Scribe Notes

Week 3 Wednesday: September 21, 2011
Andrew Sellergren

On the y-axis, we show a generic count of the number of steps it takes to
solve a problem. This number of steps is roughly proportional to time.
On the x-axis, we show the size of the problem, which we call n. n is the
number of things we’re counting or sorting or comparing. In the case of
finding the tallest person among 4 billion people, n would be 4 billion. As
you can see, as n gets larger, the linear approach quickly diverges from
the logarithmic approach. Even an approach that takes n/2 steps doesn’t
do much better. For example, counting every person in Sanders two at a
time rather than one at a time isn’t much faster.

• Interestingly, there are also algorithms that perform much worse than
linear. Generally, we’ll want to avoid anything that is exponential. In
some cases, though, it actually provides the best solution. For example,
the algorithm which would provide a solution that maximizes student
happiness in sectioning is exponential in nature. For that reason, FAS
doesn’t use it because it simply takes too long. Thus, the algorithm they
use is suboptimal.

• Computer scientists use what’s called big O notation to discuss the worst-
case runtime of algorithms. We would say that the algorithm for counting
everyone in Sanders one at a time runs in O(n). What this means is
that in the worst case, this algorithm would take n steps to complete,
given n inputs. The algorithm for counting everyone in Sanders two at a
time runs in O(n/2) and the algorithm for counting everyone in Sanders
using the divide-and-conquer approach runs in O(log n). Actually, in the
coming weeks, we’ll simplify O(n/2) to be just O(n) since in the long run,
constant coefficients have negligible effect.

3

Computer Science 50
Fall 2011
Scribe Notes

Week 3 Wednesday: September 21, 2011
Andrew Sellergren

2 Search (16:00–32:00)

• Last time, we talked about arrays as collections of related variables of the
same type stored in contiguous memory. To access each element of the
array, we used bracket notation. We also observed the dangers of iterating
off the end of an array and touching memory that doesn’t belong to us,
causing a segmentation fault.

• On the board are two arrays of integers covered by pieces of paper. These
are meant to simulate how a computer sees them. Whereas we as humans
can glance at a series of integers and see all of them at once, a computer
can only look at one integer at a time. Hence the pieces of paper covering
the integers.

• Let’s watch Sean as he tries to find the value 7 in the top array. Having
no foreknowledge of the array, he looks behind pieces of paper moving left
to right and finds that 7 is the last number in the row. Of course, this
process isn’t very efficient. In the worst case, for an array of length n,
the very last number we examine will be the one we are searching for, so
we’ll have to walk through n steps to find it. With no foreknowledge of
the array, this is the best we can do: to brute force examine every single
element of the array. Looking under the pieces of paper two at a time is
a marginal improvement, but with a large enough n, this improvement is
negligible.

• Note that in the best case, the number we’re searching for will be the first
one we examine, so the algorithm only takes 1 step. We denote this as
Ω(1), where omega refers to the best-case scenario runtime.

• Now let’s ask Jeremy to search the bottom array for the number 50, this
time knowing that the array is sorted in ascending order from left to right
but still not knowing what numbers it contains. Jeremy jumps to the
middle of the array and finds the number 61. Now we can disregard the
right half of the array since our number is less than 61 and the array is
sorted. With the remaining left half of the array, Jeremy again chooses a
number in the middle and finds 50. Success! In this case, Jeremy found
the number in 2 steps, but even in the worst case, it would only have taken
1 more step for a total of 3. Compare that to the 8 steps that Sean took.

• Dealing with a sorted array and using binary search, we were able to
greatly reduce the number of steps it took to find a specific number. But
how do we sort an array?

3 Sort (32:00–58:00)

3.1 Selection Sort

• Realize that when it comes time to implement search and sort algorithms,
there might not be an exact middle to the array or list of items. You’ll

4

Computer Science 50
Fall 2011
Scribe Notes

Week 3 Wednesday: September 21, 2011
Andrew Sellergren

need to make sure to round up or down after you divide the number of
items in the array or list by two.

• For this demonstration, we ask 8 volunteers to come on stage and hold
pieces of paper with the numbers 1 through 8 in a somewhat jumbled
order. If we were to represent these 8 numbers in a computer program,
we’d probably use an array rather than 8 separate variables. As a result,
the computer itself can’t see the values of all the variables at the same
time. This is an important consideration for us as we design our sorting
algorithms.

• Casey is our volunteer who will be sorting the other volunteers on stage.
In her first attempt, she places the number 1 in the first position of the
array, and shifts the other numbers down. Then she places the number
2 in the second position of the array, and shifts the other numbers down.
And so on. How many steps does this take to sort the entire array of 8?
Although it would seem that it took only 8 steps, one for each number that
was placed in its correct position, this estimate glosses over the additional
steps that were required to find the next smallest number and to shift
the other numbers down the array each time a number was placed in its
correct position.

• One optimization we can make is instead of shifting the other numbers
down the array, simply swap the next smallest number with the number
that is in its correct position. So, in the first case, we swap the number
that’s in index 0 of the array with the number 1. This only requires 1 step
rather than the several it takes to shift numbers down the array.

• On the first iteration of our sorting algorithm, it actually took us n steps
to find the smallest number since we have to traverse the entire array.
On the second iteration of our sorting algorithm, however, we already
know that index 0 correctly contains the smallest number, so we can skip
it when looking for the next smallest number. Thus, searching for the
smallest number takes n steps on the first iteration, n − 1 on the second
iteration, and so on. In addition to these searching steps, there is a swap
step on each iteration of the algorithm, but we can ignore this as negligible
when calculating big O notation for this algorithm. Our whole algorithm
then takes n + n− 1 + n− 2 + n− 3. . . which, if you remember some high
school math, simplifies to n(n+1)/2. In short, this algorithm takes about
n2 steps, so we say that it is in O(n2). Formally, this algorithm is called
selection sort.

3.2 Bubble Sort

• Our second sorting algorithm involves starting at the beginning of the
array and examining the first two numbers. If the left number is greater
than the right number, we know intuitively that they are out of place, so

5

Computer Science 50
Fall 2011
Scribe Notes

Week 3 Wednesday: September 21, 2011
Andrew Sellergren

we swap them. Then we iterate to the next two numbers and compare
them in the same way.

• What’s the worst-case scenario for this algorithm? If the array is in re-
verse order, it will take the maximum number of steps to sort using this
algorithm. If the number 8 is at index 0, it takes 7 swaps to move it to
its correct position on the first iteration of the algorithm. On the second
iteration of the algorithm, it takes 6 swaps to move the number 7 from
index 1 to its correct position. And so on. Looks like in the worst case,
this algorithm also takes n+n−1+n−2+n−3. . . steps, so we’re back at
O(n2). Because of the way numbers bubble up from one end of the array
to the other, this algorithm is called bubble sort.

3.3 Omega

• We’ve talked about the worst-case runtimes for selection sort and bubble
sort, but what about their best-case runtimes? In the world of sorting,
the best case is certainly that the array is already sorted.

• As it turns out, selection sort runs in n2 even in the best-case scenario.
Remember that the computer doesn’t know at the time it sees 1 in index 0
of a sorted array that 1 is the smallest number in the array. It still has to
traverse the entire array to make sure. Likewise with the second iteration,
it still takes n−1 steps to find the smallest number. And so on. Bummer,
selection sort is in Ω(n2).

• With a certain optimization, bubble sort can be in Ω(n). If the array
is already sorted and we iterate through every element of it on the first
iteration, we won’t need to make any swaps at all. If we made no swaps on
the first iteration, then there’s no need for a second iteration, since it too
will make no swaps. Thus, assuming we check if any swaps were made, we
need only one iteration of the algorithm in the best-case scenario. This
means n steps.

3.4 Simulations

• To visualize these sorting algorithms, take a look at this demo courtesy
of D. Thiebaut from Smith College.1 Note that the shorter bars represent
smaller numbers and the longer bars represent larger numbers. With this
demo, you can really get a sense for just how slow selection sort and bubble
sort really are!

• This simulation allows you to compare sorting algorithms side by side. As
a teaser for next time, try watching selection sort, bubble sort, and a new
contender, merge sort, duke it out.

1Unfortunately, this demo doesn’t work on Safari or Chrome, it appears.

6

http://maven.smith.edu/~thiebaut/java/sort/demo.html
http://cg.scs.carleton.ca/~morin/misc/sortalg/

	Big O Notation (0:00–16:00)
	Search (16:00–32:00)
	Sort (32:00–58:00)
	Selection Sort
	Bubble Sort
	Omega
	Simulations

