
Computer Science 50
Fall 2011
Scribe Notes

Week 5 Wednesday: October 5, 2011
Andrew Sellergren

Contents

1 Announcements and Demos (0:00–2:00, 40:00–45:00) 2

2 The CS50 Library (2:00–40:00) 2
2.1 scanf1.c . 4
2.2 scanf2.c . 5
2.3 scanf3.c . 6
2.4 pointers.c . 7

3 Data Forensics (45:00–56:00) 9

4 Structs (56:00–63:00) 9
4.1 structs1.c . 9

5 A Final Takeaway (63:00–64:00) 12

1

Computer Science 50
Fall 2011
Scribe Notes

Week 5 Wednesday: October 5, 2011
Andrew Sellergren

1 Announcements and Demos (0:00–2:00, 40:00–45:00)

• On the horizon is Problem Set 5, one of David’s favorites! For your first
task, you will be uncovering a secret message in what appears to be nothing
but jumbled colors. To do this, you’ll implement a color filter much like
you might’ve found in a cereal box when you were younger. For your
second task, you’ll be recovering photos that have been unintentionally
(read: intentionally) deleted from a memory card. At least one of your
predecessors actually made use of this program a few months after finishing
CS50 when his sister accidentally formatted her memory card. He went
from being “less comfortable” to salvaging 1000+ photos and saving the
day!

• CS50 Lunch this Friday at 1:15 p.m.! RSVP here. We’ll be hosting a
dinner, as well, in future weeks.

• Quiz 0 is on Wednesday! There’s no lecture on Monday. We will announce
on the course website where you are to report to take the quiz (it won’t be
Sanders). A review session will take place this Sunday at the same time
and place as the Walkthroughs. Office Hours will be held on Monday and
Tuesday nights. There are four years’ worth of past quizzes available on
the course website for you to practice with, but keep in mind that the
material has changed slightly from year to year, so don’t be alarmed if
there’s some topic covered there that you haven’t seen at all this year.
Transcripts of the videos are linked from the course website, as are these
scribe notes, which you should make use of!1

• Just for fun, David uploaded the transcripts of his lectures to a free tool
that creates word clouds, or visualizations in which the size of a word
corresponds to the frequency with which it appears. Turns out that “just”
is David’s favorite word!

• The Harvard Innovation Lab is now open! This is meant to be an open
space for entrepreneurial spirits to meet and discuss ideas. The week after
next, we’ll hold Office Hours there (complete with pizza and sodas) so you
can get a feel for it, if you so choose. Shuttles will also be available to
take you there, although it’s not that far to walk, either.

2 The CS50 Library (2:00–40:00)

• Recall the functions that are defined by the CS50 Library:

– GetChar

– GetDouble

– GetFloat

1Nothing like preaching to the choir, huh.

2

http://cs50.net/rsvp
http://i-lab.harvard.edu/

Computer Science 50
Fall 2011
Scribe Notes

Week 5 Wednesday: October 5, 2011
Andrew Sellergren

– GetInt

– GetLongLong

– GetString

We’ve been taking these functions for granted for several weeks now, but
finally we’re beginning to understand what’s going on underneath the
hood: for example, dynamic memory allocation on the heap.

• Now that you understand more about memory allocation, we can reveal a
dirty little secret to you: the CS50 Library actually leaks memory (gasp!).
When you call malloc to allocate memory on the heap, it is your responsi-
bility to call free on that same memory so that you release it when you’re
done using it. Thus far, when we’ve used GetString and the other library
functions, we’ve been calling malloc without ever calling free.

• If you’ve ever noticed your operating system getting slower and slower, it
might be because one of your open programs has a memory leak. What
this means is that it’s gradually sucking up more and more of your RAM
and never releasing it back to the operating system. As a result, your
operating system begins to think that it is out of RAM, so it lends virtual
memory (which is slower than RAM) to new programs that you open.

• If we look closer at the CS50 Library, we see that the other functions
all use GetString to get the user’s input. In every case, we check that
the return value of GetString isn’t NULL. If the user provides an input
that is too long to be stored in memory, GetString will return NULL. If
GetString returns NULL, then our wrapper functions return INT_MAX. This
is a convention of C for functions that return integers. Because 0 and -1
and other potential error codes are valid integers that could be returned
legitimately by our function, we need to find a sentinel value that is less
popular that can be returned in case of error. This is where INT_MAX

comes in: it’s a number around 2 billion that is reserved for error cases
since it is less likely to be a legitimate return value of an int function.

• Once we have checked that GetString has returned a non-NULL value, we
pass the user’s input, stored in line, to a function sscanf which looks
for format strings within it. You can think of sscanf as the opposite of
printf: it reads in as opposed to writes out. In this case, we’re looking
for an integer followed by a character. What we’re checking, however, is
if only the integer was found, in which case sscanf will return 1, the if
condition will evaluate to true, and the integer will be returned. If both
an integer and a character are captured, sscanf will return 2 and the user
will be asked to retry. This is a clever bit of error detection: if the user
types “42 f,” then both n and c will be filled and we will ask him to retry;
if the user types “42,” then only n will be filled and we will return the
integer 42. As you can infer, sscanf returns the number of placeholders
it filled.

3

Computer Science 50
Fall 2011
Scribe Notes

Week 5 Wednesday: October 5, 2011
Andrew Sellergren

• Question: what does sscanf return if the user types in only a character?
0. The order of the formatting strings %d %c is respected so that sscanf

has to find an integer first.

• Question: what’s with the while (true)? It’s a construction for an infi-
nite loop. Because true is always true,2 the loop will keep iterating until
the user provides valid input, in which case the whole function returns.

• Question: what if the user types “42f” (no space)? sscanf still returns 2
because the whitespace between %d and %c is optional.

• Question: do the CS50 Library functions hang if the user provides no
input? Yup. They wait indefinitely for the user to enter something valid.

2.1 scanf1.c

• scanf1.c demonstrates the traditional way of obtaining user input via
scanf:

/**

* scanf1.c

*

* Computer Science 50

* David J. Malan

*

* Reads a number from the user into an int.

*

* Demonstrates scanf and address-of operator.

***/

#include <stdio.h>

int

main(void)

{

int x;

printf("Number please: ");

scanf("%d", &x);

printf("Thanks for the %d!\n", x);

}

scanf reads directly from keyboard input whereas sscanf reads from a
string input. When we compile and run scanf1, we see that it works
as long as we provide integer input. However, if we enter something like

2Deep.

4

Computer Science 50
Fall 2011
Scribe Notes

Week 5 Wednesday: October 5, 2011
Andrew Sellergren

“monkey,” the program fails to detect an integer and ultimately prints
whatever garbage value was in x to begin with. To be on the safe side
in a program like this, you might choose to initialize x to some sentinel
value like INT_MAX so that there’s no risk you will attempt to print such
a garbage value.

2.2 scanf2.c

• Now that the training wheels are off, let’s try to get a string from the user
without the help of the CS50 Library:

/**

* scanf2.c

*

* Computer Science 50

* David J. Malan

*

* Reads a string from the user into memory it shouldn’t.

*

* Demonstrates possible attack!

***/

#include <stdio.h>

int

main(void)

{

char *buffer;

printf("String please: ");

scanf("%s", buffer);

printf("Thanks for the \"%s\"!\n", buffer);

}

• Incidentally, the fact that pointers are 32 bits on most systems is often
what places restrictions on the maximum amount of RAM a computer can
have. If you’ve ever heard of a computer that can only upgrade to 2GB
of RAM, for example, it might be because its pointers have only 31 bits
to store memory addresses (231 ≈ 2 billion).

• Question: are strings native to C? No. printf has a formatting place-
holder for them, but it treats them as arrays of characters, not as a native
type.

• As a sidenote, a “buffer” is really just a chunk of memory in computer-
science speak.

5

Computer Science 50
Fall 2011
Scribe Notes

Week 5 Wednesday: October 5, 2011
Andrew Sellergren

• Assuming the user provides a string input, scanf will attempt to store
this string in the memory pointed to by buffer. However, buffer is a
pointer that hasn’t been initialized with a pointee. Instead of a valid
memory address, it contains some garbage value. Thus, when we try to
access this garbage value as a memory address, we will probably cause a
segmentation fault.

• If we try to compile this program using make, we’re actually going to get
an error regarding the uninitialized pointer. This is a safety mechanism
in the form of a compiler flag that we put into place. If we compile this
program using GCC instead, we will get no errors.

• To fix this, we could initialize buffer to NULL to begin with. Then we’ll get
“Thanks for the (null),” which will at least indicate to us that something
is wrong. The real solution, however, is to initialize buffer with a pointer
to a chunk of memory allocated by malloc. We might, for example, write
the following:

char *buffer = malloc(10);

In order to use malloc, we need to include the stdlib.h library, which
thus far the CS50 Library has been doing for us. Unfortunately, hard-
coding the value of 10 as an argument to malloc isn’t a great solution
either. If we enter in a long enough input, we’re going to overflow these
10 bytes that have been allocated for us and still cause a segmentation
fault. Herein lies the motivation for the CS50 Library. In order to do this
properly, we need to ask for a small chunk of memory from malloc, then
read in the user’s input one character at a time. If ever the user’s input
requires more space than we’ve allocated, we need to ask the operating
system for more memory. And so on. Thankfully, the CS50 Library does
all of this for us.

• Question: why did we pass &x to scanf in scanf1.c but buffer to scanf

in scanf2.c? scanf takes a pointer for each formatting string that it
attempts extract. buffer is already a pointer, but x is an int, so we
must pass the address of x, or &x as an argument to scanf.

2.3 scanf3.c

• One final way that we could go about initializing a string is demonstrated
in scanf3.c:

/**

* scanf3.c

*

* Computer Science 50

* David J. Malan

6

Computer Science 50
Fall 2011
Scribe Notes

Week 5 Wednesday: October 5, 2011
Andrew Sellergren

*

* Reads a string from the user into an array (dangerously).

*

* Demonstrates potential buffer overflow!

***/

#include <stdio.h>

int

main(void)

{

char buffer[16];

printf("String please: ");

scanf("%s", buffer);

printf("Thanks for the \"%s\"!\n", buffer);

}

Here, too, we face the same problem as before when we hardcoded the
value we passed to malloc. As soon as the user provides input that is
longer than 16 characters, we’re going to run the risk of causing a segmen-
tation fault.

• Question: why do we pass buffer and not &buffer to scanf? buffer,
by virtue of being an array, is already a memory address, which is exactly
what scanf wants as an argument.

• Question: how many bytes can we store in buffer? 16. If instead buffer

were an array-of-int of size 16, it would be 64 bytes in size. The 16 makes
room for 16 of whatever data type the array stores.

• Recall that the dangers of overflowing a buffer are not just that you might
cause a segmentation fault. If the buffer is a local variable, you might
actually overwrite the return address of the function that’s currently ex-
ecuting. If a malicious user is savvy enough to accomplish this, he can
hijack your program and force it to execute his own injected code in what
is known as a buffer overrun attack.

2.4 pointers.c

• Another feature of pointers is demonstrated in pointers.c:

/**

* pointers.c

*

* Computer Science 50

* David J. Malan

7

Computer Science 50
Fall 2011
Scribe Notes

Week 5 Wednesday: October 5, 2011
Andrew Sellergren

*

* Prints a given string one character per line.

*

* Demonstrates pointer arithmetic.

***/

#include <cs50.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int

main(void)

{

// get line of text

char *s = GetString();

if (s == NULL)

return 1;

// print string, one character per line

for (int i = 0, n = strlen(s); i < n; i++)

printf("%c\n", *(s+i));

// free string

free(s);

}

We’ve already seen that we can access each character of a string like s

using bracket notation. As it turns out, this bracket notation is really just
syntactic sugar. That is, it’s shorthand that makes it easier to express
something slightly more complex. In this case, it’s shorthand for the above:
writing s[i] is actually equivalent to writing *(s+i). To understand how
this is true, consider the case where i is 0. Then *(s+i) is really *(s+0)

which is really *s. All we’re saying, then, is to dereference s, which we
know points to the first character in the string. Thus *s gives us the first
character of the string. We can infer, then, that *(s+1) will add one byte
to s and then dereference it. So it gives us the second character in s,
which is one byte away from the first character. And so on.

• Question: would we have to add more than i on each iteration (say, 4 * i)
if this were an array of integers rather than an array of characters? No.
The compiler is smart enough to know that adding 1 to a memory address
in this context means adding 1 times the size of the data type stored in
the array.

• Question: is this syntax more efficient than bracket notation? No. The

8

Computer Science 50
Fall 2011
Scribe Notes

Week 5 Wednesday: October 5, 2011
Andrew Sellergren

compiler will translate bracket notation into the above, so they are effec-
tively the same.

3 Data Forensics (45:00–56:00)

• Recall from this video that hard drives consist of spinning platters that
store the 0’s and 1’s written by voltage fluctuations sent through a read-
write head. At a higher level, though, these 0’s and 1’s are clustered
together into files. In order to keep track of these files, some section of
the hard drive is reserved for mapping filenames to memory addresses.

• Actually, a single file might contain bytes that are scattered all across the
hard drive. This is called fragmentation.

• What happens when you drag a file to the trash can on Mac OS or Win-
dows? Well, nothing. It’s pretty easy to double click the trash can and
restore that file that you supposedly deleted. But even if you right click
the trash and “empty” it, the contents of the file aren’t really deleted.
Rather, the operating system simply removes that file’s entry in the table
that maps its name to a memory address.

• Because the contents of the deleted file remain intact on the hard drive,
they can be found somewhat easily by searching the entire hard drive for
that file’s signature. A signature is a small chunk of bytes that uniquely
identifies a file type. For example, the following signature identifies (at
least with high probability) a JPEG file:

0xff 0xd8 0xff 0xe0

• In order to truly “delete” the contents of a file, you must overwrite the bits
that comprised it. One way of doing this would be to download some very
large files (like episodes of The Sopranos) so that the bits of your deleted
file will be reused. Another easier way would be to use the “Secure Empty
Trash” option on Mac OS.

• Other ways of beefing up your security are to encrypt your hard drive
and to use secure virtual memory. Encrypting your hard drive implies
that a password is required to unscramble the contents of your hard drive
while using secure virtual memory implies that the contents of your virtual
memory, the section of the hard drive used as a substitute for RAM when
you have a lot of programs open, are unreadable.

4 Structs (56:00–63:00)

4.1 structs1.c

• Thus far, we’ve worked only with data types that are native to C. But
occasionally there will be a need to work with more sophisticated data

9

http://cdn.cs50.net/2011/fall/lectures/0/demos/hardriv1.avi

Computer Science 50
Fall 2011
Scribe Notes

Week 5 Wednesday: October 5, 2011
Andrew Sellergren

structures. One example of such a data structure is a struct, a simple
example of which is defined in structs.h:

/**

* structs.h

*

* Computer Science 50

* David J. Malan

*

* Defines a student for structs{1,2}.c.

***/

// structure representing a student

typedef struct

{

int id;

char *name;

char *house;

}

student;

The typedef struct syntax begins our new definition of a variable type.
Within the curly braces, we declare the related variables that we want
to belong to this struct. Finally, after the closing curly brace, we can
optionally give the struct a name. In this case, we have defined a new
variable type named student that contains an integer and two strings
representing an ID, name, and house (or dorm), respectively.

• Now that we’ve defined this new variable type, we can make use of it in
structs1.c:

/**

* structs1.c

*

* Computer Science 50

* David J. Malan

*

* Demonstrates use of structs.

***/

#include <cs50.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

10

Computer Science 50
Fall 2011
Scribe Notes

Week 5 Wednesday: October 5, 2011
Andrew Sellergren

#include "structs.h"

// class size

#define STUDENTS 3

int

main(void)

{

// declare class

student class[STUDENTS];

// populate class with user’s input

for (int i = 0; i < STUDENTS; i++)

{

printf("Student’s ID: ");

class[i].id = GetInt();

printf("Student’s name: ");

class[i].name = GetString();

printf("Student’s house: ");

class[i].house = GetString();

printf("\n");

}

// now print anyone in Mather

for (int i = 0; i < STUDENTS; i++)

if (strcmp(class[i].house, "Mather") == 0)

printf("%s is in Mather!\n\n", class[i].name);

// free memory

for (int i = 0; i < STUDENTS; i++)

{

free(class[i].name);

free(class[i].house);

}

}

• If we compile and run structs1.c, it seems that we can store informa-
tion related to 3 students and call out any of them that are in Mather.
Nothing fancy. In fact, we could have implemented a program with the
same functionality weeks ago. However, several weeks ago, we could have
only made use of primitive data types, meaning that we would have been
juggling numerous variables in order to keep track of the IDs, names, and

11

Computer Science 50
Fall 2011
Scribe Notes

Week 5 Wednesday: October 5, 2011
Andrew Sellergren

houses of 3 different students. Here, we’ve done so in just 1 variable: an
array-of-student.

• So within structs1.c, we’ve declared an array named class that contains
three instances of the variable type student. The rest of the program asks
the user for input to populate our structs, checking for any students in
Mather so that we can call them out. Notice the syntax whereby we use
a period to refer to the inner elements of a struct.

• At the bottom of our program, we are being responsible in freeing the
memory that was used to store the names and houses of our students. We
don’t need to free the IDs of the students because GetInt does that for
us.

5 A Final Takeaway (63:00–64:00)

• Zoom and enhance does not work this well.

12

http://www.youtube.com/watch?v=lGeAu2RQcmw

	Announcements and Demos (0:00–2:00, 40:00–45:00)
	The CS50 Library (2:00–40:00)
	scanf1.c
	scanf2.c
	scanf3.c
	pointers.c

	Data Forensics (45:00–56:00)
	Structs (56:00–63:00)
	structs1.c

	A Final Takeaway (63:00–64:00)

