

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

CONTENTS INCLUDE:

n	 CSS Rationale and Use
	n	 Understanding Style Rule Syntax
n	 Inheritance
n	 Style Sheet Types
n	 Application Hierarchy and Sort Order
n	 Hot Tips and more...

As Cascading Style Sheets mature as a language of design
and a tool of Web site and application management, a deep
understanding of how the language really works is essential.
However, most people have learned CSS the same way they’ve
learned HTML—by viewing source, copying template codes,
reading books and articles. While this “bootstrap” method of
learning is often the best way to find great techniques, it may
not be the best for knowing how to manage, debug, customize
and even advance those techniques.

What our training hasn’t necessarily provided are the core
concepts within CSS. This is why the Core CSS series may contain
simple examples of things you already know. You’ll just get to
know them better here! In this foundational reference card, you’ll
find not only a bit of history and rationale for use, rule structure
and syntax, but also a thorough resource as to the Cascade,
inheritance and specificity—core principles of CSS that will expand
and strengthen your professional ability to work with CSS.

The first proposal for CSS was made by Håkom Wium Lie,
now CTO of Opera Software. He worked with Bert Bos to
co-author the first CSS specification, which believe it or not,
became a recommendation in 1996! By 1998 CSS 2.0 brought
us richer options, as we find later in advancing versions CSS
2.1 and CSS 3.0.

As CSS evolves, we find it becoming more and more important
for not only visual designers in terms of managing the esthetics
of the site, but technologists working on large web sites or
looking to create rock-solid applications.

A Separate Piece
The term for sites designed using table-based layouts and HTML
presentation rather than CSS are referred to as being authored
in presentational HTML. This means that the presentation (the
design, style, and layout) isn’t separated from the markup
(content with basic formatting).

Consider this header, which contains elements and attributes
that define presentation:

 <h1><font size=”5” color=”red” face=”Arial,
 Helvetica, sans-serif”>Welcome!</h1>

Using presentational HTML, every time you need a new font size,
color or face it has to be explicitly defined in that document. And
then redefined. In CSS, we can set up presentation and have

The idea behind CSS is not a new one. We've seen the separation
of presentation before in desktop publishing, where master style
sheets can be created to control the layout, typefaces and colors
used in a given design. Cascading Style Sheets were conceived
to do exactly that: Remove the style from the document and place
it separately from the code to be styled.

The benefits, when used carefully, can be outstanding. Some
benefits of using style sheets include:

	 n Design flexibility
 More image options
 Better typographic control
 Far more flexible layout options
 Print design support
 Handheld device design support

	 n Easier site maintenance
 One style sheet, infinite pages
 Design changes are very easy
 Changes can be made quickly
 Reduces time to launch

	 n Measurable returns
 Faster loading documents
 Far smaller documents
 User experience improves
 Accessibility improves
 SEO (search engine optimization) improves

ABOUT CSS

CSS RATIONALE AND USE

C
o

re
 C

S
S

:
P

ar
t

I

 w

w
w

.d
zo

n
e.

co
m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Core CSS: Part I
By Molly E. Holzschlag

→

Table 1. CSS Versions, Publication Dates and Implementation

Version Date Implementations

CSS 1.0 First proposed 1994,
First specification in 1996

Still flawed CSS 1 portions in all
CSS browsers

CSS 2.0 1998 No full implementation

CSS 2.1 Not yet published as a
complete specification

Some close to complete
implementations

CSS 3.0 (Modular) Certain modules are ahead
of others in development

Some CSS 3.0 features are
implemented in versions of WebKit,
Mozilla and Opera browsers

#19

 Core CSS: Part I
2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

A Separate Piece, continued
it used not only multiple times within a given document, but
across literally millions of documents. So, if I instead had a
separate style sheet with this rule:

 h1 {font-size: 80%; color: red; font-family:
 Arial, Helvetica, sans-serif;}

Every single document I want to apply this style to can be
attached to this sheet. Then, if I need to change a million
documents with an h1 of red to an h1 of green, I simply go
to the one style sheet, change the color in one location, one
time, save the style and instantly all the documents connected
to the sheet will now have green h1 headers (this is the point
where you tell the boss it’s going to take all day to make the
change, grab your stuff, and head to the beach)!

So from the get-go the principles of CSS suggest that we
gain many benefits from separating the technology layers
that make up front end Web development: Document,
presentation, behavior (Figure 1).

Of course, just because we “bake” our three-layered cake
separately, it all has to come together and just be “cake” at
some point! This is where standards-based design and best
practices come significantly into play, and of course those skills
rely in turn on quality learning in terms of both the languages
and Web browsers we use.

Learning and Implementation Curves

However, there’s been difficulty along the road to adopting,
learning and managing CSS. This difficulty is due to a number
of influences, but two of the major concerns are a steep
learning curve and lack of consistent browser implementation
of specifications.

Especially of challenge for visual designers is that CSS nomenclature
and concepts are programmatic rather than graphic-design
oriented (Table 2) and there are no tools that can fully replace
designer understanding. A fun, if not frightening metaphor
would be to ask graphic designers if they code in postscript, the
underlying language for vector drawing in Adobe products.

Learning and Implementation Curves, continued

At first glance it’s easy to think that these are simple issues and
quickly remedied. But it is undeniable that the lack of clarity
in terminology has led to a steeper learning curve than using
a table (grid) and then presentational elements to work with
that grid—much more intuitive to designers who were taught
traditional grid, color and typographic design.

That there’s a lack of consistent and well-paced implementation
in Web browsers and other user software is sadly well known,
making actual use of CSS a combination of good code riddled
with workarounds, hacks, filters and JavaScript patchwork to
repair problems across browser and browser versions. Error
handling is a particularly frustrating part of this, particularly
as Web browsers implement different versions of different
specifications at different times (Figure 2).

This is why learning as much as you can about how CSS works
is so empowering. As you begin to understand that most
frustration with CSS is not your fault and learn some techniques
to work with some of CSS’s complexities, you’ll be able to
reduce the frustration caused by certain browser differences,
CSS implementation, and be able to focus on the use of CSS
for design and document/application management.

Hot
Tip

If you use Dreamweaver, avoid using Dream-
weaver's Layers (a term that's been dropped
from CS4, thankfully), as they use style in a
less-than best case scenario. While this feature

can be helpful for wireframing, it can be downright disas-
trous in live sites. Review topics such as positioning and
CSS floats for alternatives to this feature.

Figure 1. Document (markup+content); Presentation (CSS);
Behavior (JavaScript)

Figure 2. Error handling in browsers. In the first instance, if there’s
a mistake in the rule, the browser simply drops the erroneous rule
and reverts to the browser style. In the second instance, the browser
instead makes an attempt to find a nearest value and apply the color
to nearly disastrous results.

Table 2. Brief Comparison of terminology in visual design and CSS

CSS Term Graphic Design Meaning

line-height Leading Space between lines

font-family Typeface Used to describe specific type faces
such as Helvetica

color Type color The color of the text characters

layer Multiple meanings
within software tools

For Dreamweaver users, a layer is actually
an absolutely positioned element.

#FFF White White

We’ll take a look at rule syntax here, which will set you up to
quickly understand the basic structure of CSS as we discuss
rules in the context of other language issues.

A CSS rule contains at least one selector and at least one
declaration within a declaration block. A declaration is made up
of a property name and a corresponding value. Declaration blocks
are defined by curly brackets “{}” and declarations are separated
with a semicolon:

 h1 {color: red;}

UNDERSTANDING STYLE RULE SYNTAX

→

HTML CSS JavaScript

The three-layer cake of front end development

3

DZone, Inc. | www.dzone.com

 Core CSS: Part I
 tech facts at your fingertips

Understanding Style Rule Syntax, continued

This rule in turn has the browser find a match to the h1 selector
and give it a color of red (Figure 3).

Additional declarations are simply added to the block:

h1 {color: red; font-size: 80%; font-family: Verdana;}

this rule asks the browser to match any h1, color it red, size it
relatively to 80% and apply the Verdana typeface (Figure 4):

Once again, bear in mind that there are many selector,
property, and property value types. You’ll work with many
of them within the series, and be sure to look for the online
references provided so you’ll have plenty of resources.

Inheritance, continued

Some properties are not inheritable, mostly those related to the
box model (margins, padding, box widths and so on), however
most are. Authors can tap into the power of inheritance by
allowing inheritable properties to be inherited by their children
or descendents, or prohibit inheritance if so desired.

→

Table 3. Rule Syntax in CSS

Figure 3. Using the h1 selector to apply the color “red” to a
corresponding h1 element

Figure 4. Adding additional declarations to the rule.

Grammar Purpose Examples

Selector A selector chooses (“selects”)
an element within markup
documents to be styled. There
are many selector types in CSS
2.1, and even more to come in
future years.

h1

#content

.module

:hover

Declaration A declaration is made up of
a CSS property and a related
property value. CSS properties
are numerous and define various
styles as they relate to colors,
text, positioning, margins,
padding, and positioning. A
declaration can have as many
property and value pairs as you
like, contained as a group in a
declaration block and separated
with a semi-colon “;”

color: red;

font-variant: small caps;

margin: 0 0 0;

background–image:(my.jpg);

Declaration
Block

Multiple declarations related to a
given selector are referred to as
a Declaration Block.

{color: red; font-variant:
small caps; margin: 0 0 0;
background –image:
(my.jpg); }

CSS Rule A selector plus a declaration
or declaration block makes a
CSS rule.

.module {color: red; font-
variant: small caps; margin:
0 0 0; background –image:
(my.jpg); }

Style Sheet Any set of style rules (See “Style Sheet Types” later in
this reference)

Figure 5. Inheritance. Imagine pouring a bucket of blue paint onto the
body element. Because color is an inheritable property, all text descend-
ing from body will be blue until another style overrides the inherited color.

It’s important to know that many properties and associated values
are inherited. It’s a fairly simplistic concept, simply relate it to what
you know about inheritance in living beings. I have my mother’s
curly hair, the shape of my father’s eyes. And, just as we could
map out a family tree and see where some of those features came
from, so can we use the document tree to do the same (Figure 5).

There are three primary types of style sheets as follows:

	 n Browser. The browser style sheet is the default style
 of a given browser. It is either an actual .css file such
 as we find in Mozilla browsers, or hard coded into the
 software. Browser styles are different between browsers
 and versions, so being aware of them is extremely
 important. Wherever you do not supply a style, the
 browser style will be used instead.

	 n User. User style sheets are a great concept that has
 unfortunately not been brought to bear on a large scale.
 User styles are meant for accessibility purposes. My aging
 eyes require larger text and higher contrast, I can write
 a quick style sheet to address my issues and apply it via
 the browser.

	 n Author. The author is you! That is, author styles are those
 styles that the developer or designer is in charge of
 creating to create the design and management scenarios
 for a given Web site or application.

Author Style Sheets by Type
There are three types of author style sheets: Inline, embedded
and linked (external). Each is authored differently and has
different applications, benefits, and concerns.

Inline Style
Inline style is style that is used directly in the markup document
to style one discrete element. No matter what other style sheets

INHERITANCE

STYLE SHEET TYPES

Hot
Tip

At some point you might have come across the
!important (referred to as “bang important”)
keywords. The proper use for !important is to
create a balance between author and user style

sheets, a necessity for accessibility purposes. If used in an
author style sheet but not a user style sheet, the author’s
rule is considered to have more weight and therefore will
apply. Because of this, !important is useful only in two places:
As a diagnostic tool which you remove from the declaration
after debugging a problem; and in a user style sheet.
Otherwise, please avoid usage at all costs.

4

DZone, Inc. | www.dzone.com

 Core CSS: Part I
 tech facts at your fingertips

Author Style Sheets by Type, continued

might be influencing the document, an inline style is considered
more specific and therefore will apply to that element no matter
other conflicting styles.

Consider the following paragraph element:

 <p>This paragraph is styled only by default
 browser styles</p>

The style is placed within the style attribute as a value:

 <p style=”color: blue;”>This paragraph will now
 have a blue color.</p>

Figure 6 shows the comparison.

If you’re thinking “but that code really looks just like
presentational markup!” give yourself a big pat on the back.
In recent years, many people, including those at the W3C
responsible for advancing markup and CSS, have advised that
using this technique isn’t really separating presentation from
the document at all!

So what benefits does inline style really offer? Table 4 provides
some best practice insights as to when to avoid and when to
use inline style.

Embedded Style
Embedded style is used to control the style of a single
document. In this case, the style element is used to define the
embedded area for the document’s style as follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns="http://www/w3/org/TR/xhtml1">
<head>
<title>Core CSS I: Examples</title>
<style type="text/css">
p {color: blue;}
</style>
</head>
<body>
<p>In this case, all paragraphs on the page will
turn blue.</p>
</body>

</html>

So as with inline style, we’re left looking at a type of style sheet
that, while handy in some cases, doesn’t provide the benefits
we’re looking for. With the style element in the head portion
of the document, we do achieve slightly better separation of
presentation from our document’s content and structure, but
only in that same document. Table 5 provides some insights
into the best ways to use embedded style.

Linked (External Style)
Linked style is the true “holy grail” of style sheet types. It provides
us with the broadest application of style; allows us to manage
the presentational aspects of a site from a handful of style sheets;
performance is faster due to the browser placing the styles into
memory (cache); and the worst of conflicts are avoided.

Linked style sheets are separate text documents containing
your style rules, saved with a .css file extension and linked to
from the HTML documents you want to style using the link
element in the head portion of your markup document:

 <head>

 <link rel=”stylesheet” type=”text/css” src=”style/

 global.css”>

 </head>

In almost all cases, the linked style sheet is the one you will be
working with most.

Figure 6. Applying style to a discrete element using inline style.

Table 4. Best Practices: Inline Style

Table 5. Best Practices: Embedded Style

Scenario Issues Best Practice

Inline style
in small
versus large
Web sites

If you have a very small site (10
documents or less) the risk of losing
track of inline styles is less than if
you are working on very large sites,
where it’s easy to lose track of inline
styles unless they are meticulously
documented. And who does that?

Avoid use of inline style in
almost all professional web
sites, and in particular those
sites which are large or
expected to grow significantly.

Inline
style for
debugging
purposes

As the section on “specificity” will
demonstrate, an inline style has the
highest specificity of any other rule
that might be trying to style the
element in question. If you are having
trouble getting to the heart of the
matter, dropping an inline style into the
element you are having trouble with
can help determine that in fact, there’s
a conflict.

Use inline style when necessary
to debug. Typically, if you are
able to apply a style inline that
you’d been struggling with
before means you have rules
conflicting somewhere that need
to be found. Find the conflicts,
repair the rules, and remove the
diagnostic inline style prior to
publishing!

Inline style
as “quick”
fixes (aka
laziness)

There are very few benefits from
using inline style, but one I find that’s
great is for quick fixes and blog
posts, which you can do on the fly.

Despite the fact that I do this
myself, it’s not something I’d
recommend, particularly for
professional sites.

Scenario Issues Best Practice

Embedded
style in small
versus large
Web sites

If you have a weblog with one
template document that controls
your entire site, it is feasible to use
embedded style in this instance.
However, in any professional site
or app development, avoid using
embedded style, for it, like inline
style, can contribute to confusion
when debugging.

Avoid in professional practice.

Embedded
style for
debugging
and workflow
purposes

As with inline styles, if you’re
trying to isolate why a given
style isn’t applying, you can use
embedded style to work through
some conflicts. Another use
that I find helpful is that during
development, I like to work in
one document, embedding my
styles and building out the content
and markup all in the same place.

Though not ideal, embedded
style can be used to debug
and find conflicts in the case of
multiple style sheets. Workflow
advantages as described can
be useful, the one caveat in
all instances of professional
sites: Remove your embedded
styles out to appropriate
external styles after you’re
done working, test, and you’re
good to go.

Embedded
style as “quick”
fixes (aka
laziness)

Where is that style? What if
you want to use it again more
efficiently?

Avoid publishing embedded
style sheets.

Hot
Tip

Be careful with case matching between your
CSS and HTML documents. If you create a selector
H1 in upper case, then it will only select h1s in

upper case within the markup documents. Best practices
suggest keeping all HTML elements and attribute names
in lower case (this is required in XHTML) and keeping CSS
lower case as well, helping to avoid potential case-related
conflicts. Also, while many programmers find camel case
(class=”ModuleTwo”) intuitive, this also can cause case-
matching problems, particularly in larger-scale sites,
particularly those being managed by multi-person teams.

5

DZone, Inc. | www.dzone.com

 Core CSS: Part I
 tech facts at your fingertips

Of course, most working Web developers and designers are well
aware that working with CSS just can’t be that straight forward!
There are many reasons why CSS is as broad in scope as it is,
but flexibility and power are two of the most credible reasons for
why you can approach a given problem with numerous solutions.
With freedom comes responsibility, and the same is true for
professional Web development.

In order to visualize why CSS can quickly fall from powerful
friend to chaotic foe, consider Figure 7.

The Cascade
Revisiting the browser, user, author relationship, we can take
a look at how rules “cascade” from one style sheet type to
another. Here’s the general rule of thumb:
	 n All explicit styles override browser style
	 n A user style sheet, when properly authored, will override
 author style
	 n An inline style overrides a conflicting embedded style
	 n An embedded style overrides a conflicting linked style

Rule Order
The order in which rules are sorted becomes critical in resolving
conflicting rules. Many readers are likely to have heard “the rule
closest to the content wins”— which is somewhat accurate but
also a bit misleading.

Sort order, the term that is used to describe the sorting of
multiple CSS rules, is the process by which a Web browser sorts
the rules it is given. If we have a scenario where there are two
linked style sheets, an embedded sheet in the document in
question, and an inline style, the browser has to sort through
those and resolve sort conflicts. Consider this XHTML :

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns="http://www/w3/org/TR/xhtml1">

<head>

<link rel=”stylesheet” type=”text/css” src=”style/global.css” />

<link rel=”stylesheet” type=”text/css” src=”style/local.css” />

<style type=”text/css”>

p {font-family: Times;}

</style>

</head>

<body>

<p style=”font-family: Arial;”>Which font will this be?</p>

<p>What about this paragraph?</p>

</body>

</html>

Rule Order, continued
If you imagine all the rules within global.css expanding out,
then the local.css expanding out, then the embedded style
added onto that, you get one long style sheet. If somewhere in
the first two I had conflicting rules that styled paragraphs using
the Geneva font, the sort order process will see the last style in
that long sheet as Times. Therefore, Times will be used in all
instances of p as defined within our scope with the exception
of the element containing the inline style. As mentioned earlier,
inline styles are more specific, and therefore will always “trump”
another style in a scenario like this.

Specificity
There is one final deal-breaker for the rules of Cascade and
sort, and that is the specificity of a given selector. I’ve kept the
examples here simple for a reason as selectors are complicated
and actually take up about a third of the Core CSS series.

Specificity is an algorithm with a broad base that allows an
author to create very specific rules. These rules often involve
a number of selector types, and are calculated based on the
selectors in use in the rule. If a rule is found to be more specific
than one that comes later in the sort order the more specific
rule is applied no matter where the rule resides in the sort.

Consider the following rule:

 #content p {font-family: Garamond;}

This is a combination of an ID selector (#content) and an element
selector (p). The space between the two selectors indicates a
descendent. So, let’s say I have this rule in global.css. Because
it is more specific, any paragraph that descends from an element
with an ID of #content will now be in Garamond, not in Times.

Specificity is one of the terribly misunderstood and under-
taught portions of conflict resolution within a CSS application
hierarchy. Understanding how to calculate specificity is easier if
you have a table available to work through a given conflict, then
count up the types of selectors that exist in your rules in the
exact order shown in Table 6.

We can now see that the most specific rule is the last one.
Therefore, any list item style that is not as specific will not apply to a
nested list item within the document area with an ID of “content”—
regardless of where that more specific rule resides in the sort.

There’s one specific specificity exception here. Remember that I
mentioned inline style has the highest specificity? Table 7 shows
how inline style comes into play:

If t here are inline styles within the element, a count of 1 goes
into the first (optional) column, skyrocketing the specificity of the
given element. This is why inline style is really so powerful.

Table 6. Calculating Specificity

Table 7. Specificity and presence of inline style

Example Count # of
ID Selectors

Count # of
Class Selectors

Count # of
Element Selectors

ul 0, 0, 1

#content ul li 1, 0, 2

#content ul li ul li 1, 0, 4

Example Presence of Inline
style in element

Count # of
ID Selectors

Count # of
Class Selectors

Count # of
Element Selectors

ul 1, 0, 0, 1

#content
ul li

1, 1, 0, 2

#content ul
li ul li

1, 1, 0, 4

Figure 7. Imagine a global style for the University itself. Then, each
individual department wants its own identity. This is a very common
large-organization issue, and one which inevitably leads to multiple
styles all over the site, poorly documented and managed when in fact
some intelligent coordination could be used to manage the site’s
presentation much more efficiently.

APPLICATION HIERARCHY AND SORT ORDER

Biology Psychology

Fine Arts
Main Uni Building

 Core CSS: Part I
6

 tech facts at your fingertips

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Spring Into HTML and CSS, Molly E. Holzschlag, Addison-Wesley Professional, April 22, 2005.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-18-9
ISBN-10: 1-934238-18-X

9 781934 238189

5 0 7 9 5

ABOUT THE AUTHOR

With Spring Into HTML and
CSS you'll master today's best
practices: the real nuts and bolts,
not theory or hooey. You'll learn
through dozens of focused HTML,
XHTML, and CSS examples:
crafted for simplicity and easy to
adapt for your own projects.

RECOMMENDED BOOK

BUY NOW
books.dzone.com/books/spring-html-css

Molly E. Holzschlag
Molly E. Holzschlag is a well-known Web standards advocate, instructor, and
author. She is an Invited Expert to the W3C, and has served as Group Lead
for the Web Standards Project (WaSP). She has written more than 30 books
covering client-side development and design for the Web. Currently, Molly
works to educate designers and developers on using Web technologies in
practical ways to create highly sustainable, maintainable, accessible, interac-

tive and beautiful Web sites for the global community. She consults with major companies and
organizations such as AOL, BBC, Microsoft, Yahoo! and many others in an effort to improve
standards support, workflow, solve interoperability concerns and address the long-term
management of highly interactive, large-scale sites. A popular and colorful individual, Molly
has a particular passion for people, blogs, and the use of technology for social progress.

Web Site
http://www.molly.com

The following online references will be helpful additions to the
learning in this refcard.

It should be clear that CSS has nuances that only time and
experience can reveal. Well, that and good references! Look
for the remaining “Core CSS” series and go into depth with
selectors, the box model, floats, positioning and the z-index.
Sound exciting? I think so too!

More Core CSS Refcardz:

Core CSS: Part II—October 2008

Core CSS: Part III—November 2008

FIND MORE ONLINE NEXT STEPS

Table 8. Online References

Reference URL

CSS 2.1 Specification http://www.w3.org/TR/CSS21/

CSS Discussion List http://www.css-discuss.org/

CSS-D Wiki
(Lots of helpful information and links)

http://css-discuss.incutio.com/

CSS Zen Garden
(Beautiful showcase site)

http://www.csszengarden.com/

Get More FREE Refcardz. Visit refcardz.com now!

Upcoming Refcardz:

Core Seam

Core CSS: Part III

Hibernate Search

Equinox

EMF

XML

JSP Expression Language

ALM Best Practices

HTML and XHTML

Available:
Essential Ruby
Essential MySQL
JUnit and EasyMock
Getting Started with MyEclipse

Spring Annotations

Core Java

Core CSS: Part II

PHP

Getting Started with JPA

JavaServer Faces

Core CSS: Part I

Struts2

Core .NET

Very First Steps in Flex

C#

Groovy

NetBeans IDE 6.1 Java Editor

RSS and Atom

GlassFish Application Server

Silverlight 2

Visit refcardz.com for a complete listing of available Refcardz.

Design Patterns
Published June 2008

FREE

DZone communities deliver over 4 million pages each month to

more than 1.7 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

