This is CS50
Harvard College Fall 2011

Problem Set 2: Crypto

due by noon on Thu 9/22
Per the directions at this document’s end, submitting this problem set involves submitting source code
via submit50 as well as filling out a Web-based, which may take a few minutes, so best not to wait until
the very last minute, lest you spend a late day unnecessarily.
Be sure that your code is thoroughly commented
to such an extent that lines’ functionality is apparent from comments alone.
Goals.
. Better acquaint you with functions and libraries.
. Allow you to dabble in cryptography.
Recommended Reading.
. Sections 11 — 14 and 39 of http://www.howstuffworks.com/c.htm.

. Chapters 6, 7, 10, 17, 19, 21, 22, 30, and 32 of Absolute Beginner’s Guide to C.
. Chapters 7, 8, and 10 of Programming in C.

0<15

This is CS50
Harvard College Fall 2011

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed in writing by the course’s instructor. Collaboration in the completion
of problem sets is not permitted unless otherwise stated by some problem set’s specification.

Viewing or copying another individual’s work (even if left by a printer, stored in an executable directory,
or accidentally shared in the course’s virtual terminal room) or lifting material from a book, website, or
other source—even in part—and presenting it as your own constitutes academic dishonesty, as does
showing or giving your work, even in part, to another student or soliciting the work of another
individual. Similarly is dual submission academic dishonesty: you may not submit the same or similar
work to this course that you have submitted or will submit to another. Nor may you provide or make
available solutions to problem sets to individuals who take or may take this course in the future.
Moreover, submission of any work that you intend to use outside of the course (e.g., for a job) must be
approved by the staff.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the course’s instructor.

You may turn to the Web for instruction beyond the course’s lectures and sections, for references, and
for solutions to technical difficulties, but not for outright solutions to problems on problem sets or your
own final project. However, failure to cite (as with comments) the origin of any code or technique that
you do discover outside of the course’s lectures and sections (even while respecting these constraints)
and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly. If the course refers some matter to the
Administrative Board and the outcome for some student is Admonish, Probation, Requirement to
Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local sanctions on
top of that outcome for that student that may include, but not be limited to, a failing grade for work
submitted or for the course itself.

Grades.

Your work on this problem set will be evaluated along four axes primarily.

Scope. To what extent does your code implement the features required by our specification?
Correctness. To what extent is your code consistent with our specifications and free of bugs?

Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?
All students, whether taking the course Pass/Fail or for a letter grade, must ordinarily submit this and all

other problem sets to be eligible for a passing grade (i.e., Pass or A to D-) unless granted an exception in
writing by the course’s instructor.

1<15

Help!

This is CS50
Harvard College Fall 2011

Surf on over to

http://help.cs50.net/
and log in if prompted. Then take a look around!

Henceforth, consider help.cs50.net the place to turn to anytime you have questions. Not only
can you post questions of your own, you can also search for or browse answers to questions
already asked by others.

It is expected, of course, that you respect the course’s policies on academic honesty. Posting
snippets of code about which you have questions is generally fine. Posting entire programs, even
if broken, is definitely not. If in doubt, simply flag your discussion as “private,” particularly if you
need to show us most or all of your code. But the more questions you ask publicly, the more
others will benefit as well!

Lest you feel uncomfortable posting, know that students’ posts to the course’s bulletin board are
anonymized. Only the staff, not fellow students, will know who you are. Certainly don’t hesitate
to post a question because you think that it’s “dumb.” It is not!

Sanity Check.

O

Tips.

You should already have the CS50 Appliance installed, per Problem Set 1. But be sure that you
have version 2.3. To check, launch VirtualBox (as by double-clicking its icon wherever it’s
installed), and in VirtualBox’s lefthand menu should be CS50 Appliance 2.3. If you instead see an
older version (e.g., CS50 Appliance 2.1), head to https://manual.cs50.net/FAQs for
instructions on how to upgrade to version 2.3.

If you have a computer that’s a few years old or a netbook (in which case your CPU might be on
the slower side and your RAM on the lower side), head to https://manual.cs50.net/FAQs
for tips on how to improve the appliance’s performance if you're finding it slow. If you’re finding
that the appliance is too slow to even be usable on your computer, email sysadmins@cs50.net
to inquire about options.

Realize that the CS50 Appliance is a computer, albeit a virtual one. For better or for worse (mostly
worse), computers don’t like to be forcibly shut down or otherwise interrupted while in the
middle of something. Do take care, then, not to quit VirtualBox, shutdown your own computer, or
even close your laptop’s lid while the appliance is in the middle of something (e.g., downloading
or installing updates, submitting your work, etc.) Best to wait until the appliance isn’t doing
anything important, then shut it down (as via the green icon in the appliance’s bottom-right
corner). Bad things can happen, too, if your own computer runs out of disk space, so beware

2<15

This is CS50
Harvard College Fall 2011

downloading big files on your own computer if you know you’re low on disk space while the
appliance is running.

When running, the CS50 Appliance “borrows” some of your computer’s own RAM and CPU cycles,
which can slow down programs on your computer and vice versa. For maximum performance, try
to launch VirtualBox and the appliance before launching other programs on your computer, and
try to minimize the number of programs running on your computer while the appliance is running.

With that said, if you have lots of RAM (e.g., 4GB) and lots of CPU cycles (e.g., 2.0GHz), you might
not need to give any of this a second thought!

We've chased down and corrected almost all of the problems that folks ran into with the
appliance during Problem Set 1. But at least one quirk remains, whereby if you double-click a .c
file on your desktop (or somewhere in John Harvard’s home directory), gedit might not actually
open, though your cursor might start to spin. If you run into that issue, simply launch gedit via
Menu > Programming > gedit (or via its icon in the appliance’s bottom-left corner), then open the
file in question via File > Open....

If you run into some technical difficulty with the appliance itself, unrelated to C code, do consult
https://manual.cs50.net/FAQs first, followed by http://help.cs50.net/. Anytime you
post to help.cs50.net, do take care to be as specific as possible, mentioning your OS (and
version thereof), your symptoms, and what interventions you’ve already tried. “It’s not working”
isn’t quite enough detail for us to know how we can help!

Just to be safe, do get into the habit of backing up your .c files from time to time, whether to
your own hard drive, to dropbox.com, or to CS50’s servers. To back up your files to your own
hard drive (outside of the appliance), see:

https://manual.cs50.net/CS50_Appliance_2.3#How_to_Transfer Files_between Appliance_and_Your_ Computer
To synchronize with dropbox. com, see:

https://manual.cs50.net/Appliance#How to Synchronize Files with Dropbox

To back up your files to CS50’s servers, simply run submit50 (per this document’s end), as though
you’re submitting your work. You can re-submit as many times as you’d like (prior to the problem
set’s deadline), so you might as well submit as you go, just in case something goes wrong with
your computer or appliance! If you need to retrieve your files from CS50’s servers, consult
https://manual.cs50.net/FAQs!

We'll soon introduce you to other techniques!

3<15

This is CS50
Harvard College Fall 2011

Getting Started.

O

Alright, here we go!

Launch VirtualBox (as by double-clicking its icon wherever it’s installed), and then boot the
appliance (as by single-clicking it in VirtualBox’s lefthand menu, and then clicking Start).

Upon reaching John Harvard’s desktop, open a terminal window (remember how?) and type the
below, followed by Enter:

sudo yum -y update

Input crimson if prompted for John Harvard’s password. For security, you won’t see any
characters as you type. That command essentially does what Menu > Administration > Software
Update does, but you’ll see in more detail what’s going on.

Realize that updating the appliance in this manner requires Internet access. If on a slow
connection (or computer), it might take a few minutes to update the appliance. Don’t worry if the
process seems to hang if it decides to update a “package” called cs50-appliance; that one can
take several minutes.

If you see messages like Couldn’t resolve host or Cannot retrieve metalink for repository, those
simply mean that the appliance doesn’t currently have Internet access. Sometimes that happens
if you've just awakened your computer from sleep or perhaps changed from wireless to wired
Internet or vice versa. If your own computer does have Internet access (which you can confirm by
trying to visit some website in a browser on your own computer) but the appliance does not
(which you can confirm by trying to visit the same with Firefox within the appliance), try restarting
the appliance (as by clicking the green icon in its bottom-right corner, then clicking Restart). If,
upon restart, the appliance still doesn’t have Internet access, head to
https://manual.cs50.net/FAQs followed by http://help.cs50.net/ for help!

Once the appliance has been updated, you should see Complete! in your terminal window. |If
there was nothing to update, you’ll see No packages marked for Update instead.

Juuuuuuuuuust to be sure that everything worked, go ahead and execute that very same
command again in a terminal window (though not while its first invocation is still running):

sudo yum -y update

Again, input crimson if prompted for John Harvard’s password. (If only a few minutes have passed
since the last update, you might not even be prompted.) You should now see No packages
marked for Update, which means that your appliance is now up-to-date! If you see some error
instead, try once more, try to restart the appliance and then try once more, then head to
https://manual.cs50.net/FAQs followed by http://help.cs50.net/ as needed for help!

4<15

This is CS50
Harvard College Fall 2011

[0 Alright, here we go for real!l Open a terminal window if not open already (whether by opening
gedit via Menu > Programming > gedit or by opening Terminal itself via Menu > Programming >
Terminal). Then execute

mkdir ~/pset?2

at your prompt in order to make a directory called pset2 in your home directory.’ Take care not
to overlook the space between mkdir and ~/pset2 or any other character for that matter!
Recall that ~ denotes your home directory, and thus ~/pset2 denotes a directory called pset2
therein.

Now execute

cd ~/pset2

to move yourself into (i.e., open) that directory. Your prompt should now resemble the below.

jharvardQappliance (~/pset2):

If not, retrace your steps and see if you can determine where you went wrong. You can actually
execute

history

at the prompt to see your last several commands in chronological order if you'd like to do some
sleuthing. You can also scroll through the same one line at a time by hitting your keyboard’s up
and down arrows; hit Enter to re-execute any command that you’d like. If still unsure how to fix,
remember that help.cs50.net is your friend!

All of the work that you do for this problem set must ultimately reside in your pset2 directory for
submission.

Let’s Warm Up with a Song.

[Recall the following song from childhood. (Mine, at least.)

This old man, he played one

He played knick-knack on my thumb
Knick-knack paddywhack, give your dog a bone
This old man came rolling home

This old man, he played two

He played knick-knack on my shoe

Knick-knack paddywhack, give your dog a bone
This old man came rolling home

1
If you decide to use dropbox.com, you can instead store your files in, say, ~/Dropbox/pset2.

5<15

This is CS50
Harvard College Fall 2011

This old man, he played three

He played knick-knack on my knee
Knick-knack paddywhack, give your dog
This old man came rolling home

This old man, he played four

He played knick-knack on my door
Knick-knack paddywhack, give your dog
This old man came rolling home

This old man, he played five

He played knick-knack on my hive
Knick-knack paddywhack, give your dog
This old man came rolling home

This old man, he played six

He played knick-knack on my sticks
Knick-knack paddywhack, give your dog
This old man came rolling home

This old man, he played seven

He played knick-knack up in heaven
Knick-knack paddywhack, give your dog
This old man came rolling home

This old man, he played eight

He played knick-knack on my gate
Knick-knack paddywhack, give your dog
This old man came rolling home

This old man, he played nine

He played knick-knack on my spine
Knick-knack paddywhack, give your dog
This old man came rolling home

This old man, he played ten

He played knick-knack once again
Knick-knack paddywhack, give your dog
This old man came rolling home

Oddly enough, the lyrics to this song don’t seem

a bone

a bone

a bone

a bone

a bone

a bone

a bone

a bone

to be standardized. In fact, if you'd like to be

overwhelmed with variations, search for some with Google. And then stop procrastinating.

Your first challenge this week is to write, in oldman. c, a program that prints, verbatim, the above
version of “This Old Man.” Your version should be capitalized and spelled exactly as ours is.

Notice, though, the repetition in this song’s verses. Perhaps you could leverage a loop that
iterates from 1 to 10 (or O to 9) to generate them? Though they do vary somewhat, so you might
need some conditions? Seems you could even implement a couple of functions that take, as
input, an integer and return, as output, a string? Or maybe you could store all those strings in

arrays? Hm. So many possibilities!

6<15

This is CS50
Harvard College Fall 2011

There are, as you may be increasingly aware, many ways to solve problems like this one. Pick an
approach, implement it, test it, then go back and see if you can improve it before moving on!
Ultimately, not only should your code be correct (i.e., work right), it should also manifest good
design and good style. Rest assured that there are many ways to implement this song.

Style is easy. Ask yourself questions like these: Is my code well commented, without being
excessively so? Is my code “pretty-printed” (i.e., consistently indented)? Are my variables aptly
named? Refer backto https://manual.cs50.net/Style as needed

As for design, ask yourself questions like these: Is my code straightforward to read? Am | wasting
CPU cycles unnecessarily? Is my code more complicated than it need be to get this job done?

And don’t forget scope: be sure that you’ve checked off (if mentally) each of this specification’s
checkboxes!

Consider yourself done with this problem when you feel there’s no more room for improvement!

Your program will need, at least, a main function. It’s up to you to decide whether or not you
want to write one or more additional functions that main calls. Remember that you can compile
your program with:

make oldman

And you can run it with:
./oldman

As this usage implies, o1dman need not accept any “command-line arguments.” And so it suffices
to declare main with

int
main (void)

without any mention of argc or argv. If you'd like to play with the staff’s own implementation of
oldman in the appliance, you may execute the below.

~cs50/pset2/o0ldman

Alright, off you go! Don’t forget to back up your files (as to your own hard drive, to
dropbox.com, or to CS50’s servers with submit50)!

7<15

This is CS50
Harvard College Fall 2011

Hail, Caesar!

] Recall from the end of Week 2 that Caesar’s cipher encrypts (i.e., scrambles in a reversible way)
messages by “rotating” each letter by k positions, wrapping around from 'Z' to 'A' as needed:

http://en.wikipedia.org/wiki/Caesar cipher

In other words, if p is some plaintext (i.e., an unencrypted message), p; is the i ™ character in p,
and k is a secret key (i.e., a non-negative integer), then each letter, c;, in the ciphertext, c, is
computed as:

ci=(pi+k) %26

This formula perhaps makes the cipher seem more complicated than it is, but it’s really just a nice
way of expressing the algorithm precisely and concisely. And computer scientists love precision
and, er, concision.’

For example, suppose that the secret key, k, is 13 and that the plaintext, p, is “be sure to drink
your Ovaltine.” Let’s encrypt that p with that k in order to get the ciphertext, ¢, by rotating each
of the letters in p by 13 places:

plaintext: Be sure to drink your Ovaltine!
ciphertext: Or fher gb gevax lbhe Binygvar!

We've deliberately printed the above in a monospaced font so that all of the letters line up nicely.
Notice how 0 (the first letter in the ciphertext) is 13 letters away from B (the first letter in the
plaintext). Similarly is r (the second letter in the ciphertext) 13 letters away from e (the second
letter in the plaintext). Meanwhile, £ (the third letter in the ciphertext) is 13 letters away from s
(the third letter in the plaintext), though we had to wrap around from Z to A to get there. And so
on. Not the most secure cipher, to be sure, but fun to implement!

Incidentally, a Caesar cipher with a key of 13 is generally called ROT13:

http://en.wikipedia.org/wiki/ROT13
In the real world, though, it’s probably best to use ROT26, which is believed to be twice as secure.?

Anyhow, your next goal is to write, in caesar.c, a program that encrypts messages using
Caesar’s cipher. Your program must accept a single command-line argument: a non-negative
integer. Let’s call it k. If your program is executed without any command-line arguments or with
more than one command-line argument, your program should yell at the user and return a value
of 1 (which tends to signify an error) immediately as via the statement below:

return 1;

2 . . .
Okay, fine, conciseness. So much for parallelism.
3
http://www.urbandictionary.com/define.php?term=ROT26

8<15

This is CS50
Harvard College Fall 2011

Otherwise, your program must proceed to prompt the user for a string of plaintext and then
output that text with each alphabetical character “rotated” by k positions; non-alphabetical
characters should be outputted unchanged. After outputting this ciphertext, your program should
exit, with main returning 0.

Although there exist only 26 letters in the English alphabet, you may not assume that k will be less
than or equal to 26; your program should work for all non-negative integral values of k less
than 2°* — 26. (In other words, you don’t need to worry if your program eventually breaks if the
user chooses a value for k that’s too big or almost too big to fitin an int. Now, even if k is greater
than 26, alphabetical characters in your program’s input should remain alphabetical characters in
your program’s output. For instance, if k is 27, A should not become [even though [is 27
positions away from A in ASCIl; A should become B, since 27 modulo 26 is 1, as a computer
scientists might say. In other words, values like k = 1 and k = 27 are effectively equivalent.

Your program must preserve case: capitalized letters, though rotated, must remain capitalized
letters; lowercase letters, though rotated, must remain lowercase letters.

Where to begin? Well, this program needs to accept a command-line argument, k, so this time
you’ll want to declare main with:

int
main (int argc, char *argvl([])

Recall that argv is an “array” of strings (which are otherwise known as “char stars” for reasons
we’ll soon see). In fact, because stringis just a synonym for char *, thanks to the CS50 Library,
you could actually declare main with

int
main (int argc, string argvl([])

if you find that syntax more clear. Either way, you can think of an array as row of gym lockers,
inside each of which is some value (and maybe some socks). In this case, inside each such locker is
a string. To open (i.e., “index into”) the first locker, you use syntax like argv[0], since arrays
are “zero-indexed.” To open the next locker, you use syntax like argv[1]. And so on. Of course,
if there are n lockers, you’'d better stop opening lockers once you get to argv[n-1], since
argv[n] doesn’t exist! (That or it belongs to someone else, in which case you still shouldn’t open
it.)

And so you can access k with code like
string k = argv[l];

assuming it’s actually there! Recall that argc is an int that equals the number of strings that are
in argv, so you'd best check the value of argc before opening a locker that might not exist!
Ideally, argc will be 2. Why? Well, recall that inside of argv[0], by default, is a program’s own
name. So argc will always be at least 1. But for this program you want the user to provide a
command-line argument, k, in which case argc should be 2. Of course, if the user provides more

9<15

This is CS50
Harvard College Fall 2011

than one command-line argument at the prompt, argc could be greater than 2, in which case it’s
time for some yelling.

Now, just because the user types an integer at the prompt, that doesn’t mean their input will be
automatically stored in an int. Au contraire, it will be stored as a string that just so happens to
look like an int! And so you’ll need to convert that string to an actual int. As luck would have
it, a function, atoi, exists for exactly that purposes. Here’s how you might use it:

int k = atoi(argv[l]);

Notice, this time, we’ve declared k as an actual int so that you can actually do some arithmetic
with it. Ah, much better. Incidentally, you can assume that the user will only type integers at the
prompt. You don’t have to worry about them typing, say, foo, just to be difficult; atoi will just
return 0 in such cases. Incidentally, you’ll need to #include a header file other than cs50.h and
stdio.h in order to use of atoi without getting yelled at by gcc. We leave it to you to figure out
which one!*

Okay, so once you’ve got k stored as an int, you’ll need to ask the user for some plaintext. Odds
are CS50’s own GetString can help you with that.

Once you have both k and some plaintext, it's time to encrypt the latter with the former. Recall
that you can iterate over the characters in a string, printing each one at a time, with code like
the below:

for (int 1 = 0, n = strlen(p); 1 < n; i++)
{
printf ("%c", plil);

In other words, just as argv is an array of strings, so is a string an array of characters. And so
you can use square brackets to access individual characters in strings just as you can individual
strings in argv. Neat, eh? Of course, printing each of the characters in a string one at a time isn’t
exactly cryptography. Well, maybe technically if k = 0. But the above should help you help Caesar
implement his cipher! For Caesar!

Incidentally, you'll need to #include yet another header file in order to use strlen.’

So that we can automate some tests of your code, your program must behave per the below.
Assumed that the boldfaced text is what some user has typed.

jharvard@appliance (~/pset2): ./caesar 13
Be sure to drink your Ovaltine!
Or fher gb gevax lbhe Binygvar!

4
https://www.cs50.net/resources/cppreference.com/stdstring/atoi.html

5
https://www.cs50.net/resources/cppreference.com/stdstring/strlen.html

10< 15

This is CS50.
Harvard College Fall 2011

Besides atoi, you might find some handy functions documented at:

http://www.cs50.net/resources/cppreference.com/stdstring/

For instance, isdigit sounds interesting. And, with regard to wrapping around from Z to 3,
don’t forget about %. You might also want to check out http://asciitable.com/, which
reveals the ASCII codes for more than just alphabetical characters, just in case you find yourself
printing some characters accidentally.

If you'd like to play with the staff's own implementation of caesar in the appliance, you may
execute the below.

~cs50/pset2/caesar

Don’t forget to back up your files (as to your own hard drive, to dropbox.com, or to CS50’s
servers with submit50)!

[0 uggc://j373.1lbhghor.pbz/jngpu?i=bUt5FWLEUNO

Parlez-vous frangais?

[0 Well that last cipher was hardly secure. Fortunately, per Week 3’s first lecture, there’s a more
sophisticated algorithm out there: Vigenere’s. It is, of course, French:®

http://en.wikipedia.org/wiki/Vigen%C3%A8re cipher

Vigenere’s cipher improves upon Caesar’s by encrypting messages using a sequence of keys (or,
put another way, a keyword). In other words, if p is some plaintext and k is a keyword (i.e., an
alphbetical string, whereby A and a represent 0, while z and z represent 25), then each letter, ¢,
in the ciphertext, c, is computed as:

¢;= (pi+ k) % 26

Note this cipher’s use of k; as opposed to just k. And recall that, if k is shorter than p, then the
letters in k must be reused cyclically as many times as it takes to encrypt p.

Your final challenge this week is to write, in vigenere.c, a program that encrypts messages
using Vigeneére's cipher. This program must accept a single command-line argument: a keyword,
k, composed entirely of alphabetical characters. If your program is executed without any
command-line arguments, with more than one command-line argument, or with one command-
line argument that contains any non-alphabetical character, your program should complain and
exit immediately, with main returning 1 (thereby signifying an error that our own tests can
detect). Otherwise, your program must proceed to prompt the user for a string of plaintext, p,

® Do not be mislead by the article’s discussion of a tabula recta. Each c; can be computed with relatively simple
arithmetic! You do not need a two-dimensional array.

11<15

This is CS50
Harvard College Fall 2011

which it must then encrypt according to Vigenére’s cipher with k, ultimately printing the result and
exiting, with main returning 0.

As for the characters in k, you must treat Aandaas0,Bandbas1,...,and z and z as 25. In
addition, your program must only apply Vigeneére’s cipher to a character in p if that character is a
letter. All other characters (numbers, symbols, spaces, punctuation marks, etc.) must be
outputted unchanged. Moreover, if your code is about to apply the j™ character of k to the i ™
character of p, but the latter proves to be a non-alphabetical character, you must wait to apply
thatjth character of k to the next alphabetical character in p; you must not yet advance to the next
character in k. Finally, your program must preserve the case of each letter in p.

Not sure where to begin? As luck would have it, this program’s pretty similar to caesar! Only
this time, you need to decide which character in k to use as you iterate from character to
characterin p.

So that we can automate some tests of your code, your program must behave per the below;
highlighted in bold are some sample inputs.

jharvard@appliance (~/pset2): ./vigenere FOOBAR

HELLO, WORLD
MSZMO, NTFZE

How to test your program, besides predicting what it should output, given some input? Well,
recall that we’re nice people. And so we’ve written a program called devigenere that also takes
one and only one command-line argument (a keyword) but whose job is to take ciphertext as
input and produce plaintext as output.

To use our program, execute

~cs50/pset2/devigenere k

at your prompt, where k is some keyword. Presumably you’ll want to paste your program’s
output as input to our program; be sure, of course, to use the same key. Note that you do not

need to implement devigenere yourself, only vigenere.

If you'd like to play with the staff’s own implementation of vigenere in the appliance, you may
execute the below.

~cs50/pset2/vigenere

Don’t forget to back up your files (as to your own hard drive, to dropbox.com, or to CS50’s
servers with submit50)!

12<15

This is CS50.
Harvard College Fall 2011

How to Submit.

In order to submit this problem set, you must first execute a command in the appliance and then submit
a (brief) form online.

O

Recall that you obtained a CS50 Cloud account (i.e., username and password) for Problem Set 1. If
you don’t remember your username and/or password, head to https://cloud.cs50.net/
look up the former and/or change the latter. You'll be prompted to log in with your HUID (or XID)
and PIN.

Just in case we updated submit50 since you started this problem set, open a terminal window
and execute the below, inputting crimson if prompted for John Harvard’s password.

sudo yum -y update

If there was something to update, you should see Complete! after a few seconds or minutes. If
there was nothing to update, you should instead see No packages marked for Update. If you see
any errors, try the command once more, try to restart the appliance and then try once more, then
head to https://manual.cs50.net/FAQs followed by http://help.cs50.net/ as needed
for help!

To actually submit, first open a terminal window and execute:’
cd ~/pset2

Then execute:

1s

At a minimum, you should see oldman.c, caesar.c, and vigenere.c, capitalized and spelled
exactly like that. If not, odds are you skipped some step(s) earlier! In particular, if you misnamed
some file (e.g., vigenere.c as Vigenere. c), know that you can rename it with a command like

mv Vigenere.c vigenere.c

where mv’s first command-line argument is the file’s current name and mv’s second command-line
argument is the file’s new name. If you don’t see any or all of your files, you might have saved
them somewhere else accidentally. Poke around John Harvard’s desktop and home directory, and
drag files as needed into the pset2 directory that should be in his home directory.

If everything is as it should be, you are ready to submit your source code to us. Execute:®

submit50 ~/pset2

7 . . .
Unless you decided to use dropbox.com and stored your files in, say, ~/Dropbox/pset2.

8 Ibid.

13<15

This is CS50.
Harvard College Fall 2011

When prompted for Course, input ¢s50; when prompted for Repository, input pset2. When
prompted for a username and password, input your CS50 Cloud username and password. For
security, you won’t see your password as you type it. That command will essentially upload your
entire ~/pset2 directory to CS50’s repository, where your TF will be able to access it. The
command will inform you whether your submission was successful or not. If provided with the
URL of a PDF of your code (which further confirms its submission), right-click (or ctrl-click) the link,
then choose Open Link from the menu that appears to open the PDF in Document Viewer.

You may re-submit as many times as you’d like; we’ll grade your most recent submission. But take
care not to submit after the problem set’s deadline, lest you spend a late day unnecessarily or risk
rejection entirely.

If you run into any trouble at all, let us know via help.cs50.net and we'll try to assist! Just take
care to seek help well before the problem set’s deadline, as we can’t always reply within minutes!

Head to the URL below where a short form awaits:
https://www.cs50.net/psets/2/

Once you have submitted that form (as well as your source code), you are done!

This was Problem Set 2.

14 <15

