This is CS50
Harvard College Fall 2011

Problem Set 3: The Game of Fifteen

due by noon on Thu 9/29

Per the directions at this document’s end, submitting this problem set involves submitting source code
via submit50 as well as filling out a Web-based form, which may take a few minutes, so best not to
wait until the very last minute, lest you spend a late day unnecessarily.

Be sure that your code is thoroughly commented
to such an extent that lines’ functionality is apparent from comments alone.

Goals.

. Introduce you to larger programs and programs with multiple source files.
. Empower you with Makefiles.

. Implement a party favor.

Recommended Reading.
. Section 17 of http://www.howstuffworks.com/c.htm.

. Chapters 20 and 23 of Absolute Beginner’s Guide to C.
. Chapters 13, 15, and 18 of Programming in C.

0<15

This is CS50
Harvard College Fall 2011

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed in writing by the course’s instructor. Collaboration in the completion
of problem sets is not permitted unless otherwise stated by some problem set’s specification.

Viewing or copying another individual’s work (even if left by a printer, stored in an executable directory,
or accidentally shared in the course’s virtual terminal room) or lifting material from a book, website, or
other source—even in part—and presenting it as your own constitutes academic dishonesty, as does
showing or giving your work, even in part, to another student or soliciting the work of another
individual. Similarly is dual submission academic dishonesty: you may not submit the same or similar
work to this course that you have submitted or will submit to another. Nor may you provide or make
available solutions to problem sets to individuals who take or may take this course in the future.
Moreover, submission of any work that you intend to use outside of the course (e.g., for a job) must be
approved by the staff.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the course’s instructor.

You may turn to the Web for instruction beyond the course’s lectures and sections, for references, and
for solutions to technical difficulties, but not for outright solutions to problems on problem sets or your
own final project. However, failure to cite (as with comments) the origin of any code or technique that
you do discover outside of the course’s lectures and sections (even while respecting these constraints)
and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly. If the course refers some matter to the
Administrative Board and the outcome for some student is Admonish, Probation, Requirement to
Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local sanctions on
top of that outcome for that student that may include, but not be limited to, a failing grade for work
submitted or for the course itself.

Grades.

Your work on this problem set will be evaluated along four axes primarily.

Scope. To what extent does your code implement the features required by our specification?
Correctness. To what extent is your code consistent with our specifications and free of bugs?

Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?
All students, whether taking the course Pass/Fail or for a letter grade, must ordinarily submit this and all

other problem sets to be eligible for a passing grade (i.e., Pass or A to D-) unless granted an exception in
writing by the course’s instructor.

1<15

This is CS50
Harvard College Fall 2011

Getting Started.

O

Welcome back!

Launch VirtualBox (as by double-clicking its icon wherever it’s installed), and then boot the
appliance (as by single-clicking it in VirtualBox’s lefthand menu, and then clicking Start).

Upon reaching John Harvard’s desktop, open a terminal window (remember how?) and type the
below, followed by Enter:

sudo yum -y update

Input crimson if prompted for John Harvard’s password. For security, you won’t see any
characters as you type. Realize that updating the appliance in this manner requires Internet
access. If on a slow connection (or computer), it might take a few minutes to update the
appliance. Don’t worry if the process seems to hang if it decides to update a “package” called
cs50-appliance; that one can take several minutes.

If you see messages like Couldn’t resolve host or Cannot retrieve metalink for repository, those
simply mean that the appliance doesn’t currently have Internet access. Sometimes that happens
if you’ve just awakened your computer from sleep or perhaps changed from wireless to wired
Internet or vice versa. If your own computer does have Internet access (which you can confirm by
trying to visit some website in a browser on your own computer) but the appliance does not
(which you can confirm by trying to visit the same with Firefox within the appliance), try restarting
the appliance (as by clicking the green icon in its bottom-right corner, then clicking Restart)." If,
upon restart, the appliance still doesn’t have Internet access, head to
https://manual.cs50.net/FAQs followed by http://help.cs50.net/ for help!

Once the appliance has been updated, you should see Complete! in your terminal window. If
there was nothing to update, you’ll see No packages marked for Update instead.

Just to be sure that everything worked, go ahead and execute that very same command again in a
terminal window (though not while its first invocation is still running):

sudo yum -y update

Again, input crimson if prompted for John Harvard’s password. (If only a few minutes have passed
since the last update, you might not even be prompted.) You should now see No packages
marked for Update, which means that your appliance is now up-to-date! If you see some error
instead, try once more, try to restart the appliance and then try once more, then head to
https://manual.cs50.net/FAQs followed by http://help.cs50.net/ as needed for help!

! Alternatively, you can try typing:

sudo service network restart
But if that doesn’t work, best to restart the appliance.

2<15

This is CS50
Harvard College Fall 2011

[Recall that, for Problem Sets 1 and 2, you started writing programs from scratch, creating your
own psetl and pset2 directories with mkdir. For Problem Set 3, you’ll instead download
“distribution code” (otherwise known as a “distro”), written by us, and add your own lines of code
to it. You'll first need to read and understand our code, though, so this problem set is as much
about learning to read someone else’s code as it is about writing your own!

Let’s get you started. Go ahead and open a terminal window if not open already (whether by
opening gedit via Menu > Programming > gedit or by opening Terminal itself via Menu >
Programming > Terminal). Then execute

cd

to return to your home directory, if not already there, and then execute

git clone http://cdn.cs50.net/2011/fall/psets/3/pset3.git/

to download this problem set’s distro into your appliance. You should see Cloning into
pset3... and then your prompt again. If you instead see fatal followed by not found: did
you run, odds are you made a typo. Best to try again!

Once successful, you should find that you have a brand-new pset3 directory inside of your home
directory. You can confirm as much with:

1s

So, what was that git command? git is a popular “distributed version control system,” a tool
that programmers use to download someone else’s code, to maintain multiple versions of their
own code, and to save their own code to a remote server. That last feature should sound familiar.
Each time you run submit50, you’re saving your code to CS50’s server. In fact, all this time,
submit50 has been secretly using git to do just that! But more on git another time. For now,
all we’ve used it for is to download (i.e., “clone”) this problem set’s distro code into your home
directory.2

Okay, now execute
cd ~/pset3

to move yourself into (i.e., open) the directory you just cloned. Your prompt should now resemble
the below.

jharvard@appliance (~/pset3):
And if you execute

1s

2 ore . . .
If already familiar with git, you’re welcome to use it for local commits.

3<15

This is CS50
Harvard College Fall 2011

you should see

fifteen find
which are two directories inside of which your programs will soon live! Fun times ahead!

All of the work that you do for this problem set must ultimately reside in your pset 3 directory for
submission.

The Real World.

O

Find.

If you’ve dropped by office hours of late, particularly on a Tuesday or Wednesday, you’ll know that
having 100 or more laptops in the same room (not to mention nearly as many smart phones in
pockets) tends to slow down (or take down altogether) wireless Internet access (otherwise known
as 802.11 or Wi-Fi). In fact, visit most any hotel that has Wi-Fi, and you’ll likely find that it slows
down significantly at night, once folks have returned to their rooms.

Head on over to
http://computer.howstuffworks.com/wireless-network.htm

and read up on how Wi-Fi itself works. No need to absorb every little detail, but odds are we’ll
have some questions for you before long!

Incidentally, HUIT is in the process of installing more Wi-Fi hardware (otherwise known as access

points or APs) in the dining halls of Pfoho, Leverett, Quincy, and Lowell for us, so a better
experience is on the way!

Okay, let’s dive into the first of those subdirectories. Execute the command below in a terminal
window in your appliance.

cd ~/pset3/find/

If you list the contents of this directory, you should see the below.

helpers.c helpers.h Makefile find.c generate.c
Wow, that’s a lot of files, eh? Not to worry, we'll walk you through them.

Implemented in generate.c is a program that uses a “pseudorandom-number generator” (via a
function called rand) to generate a whole bunch of random (well, pseudorandom, since

4<15

This is CS50
Harvard College Fall 2011

computers can’t really generate truly random) numbers, one per line.> Go ahead and compile this
program by executing the command below.

make generate

Now run the program you just compiled by executing the command below.

./generate

You should be informed of the program’s proper usage, per the below.

Usage: generate n [s]

As this output suggests, this program expects one or two command-line arguments. The first, n, is
required; it indicates how many pseudorandom numbers you’d like to generate. The second, s, is
optional, as the brackets are meant to imply; if supplied, it represents the value that the
pseudorandom-number generator should use as its “seed.” A seed is simply an input to a
pseudorandom-number generator that influences its outputs. For instance, if you seed rand by
first calling srand (another function whose purpose is to “seed” rand) with an argument of,
say, 1, and then call rand itself three times, rand might return 17767, then 9158, then 39017.°
But if you instead seed rand by first calling srand with an argument of, say, 2, and then call rand
itself three times, rand might instead return 383906, then 31103, then 52464. But if you re-seed
rand by calling srand again with an argument of 1, the next three times you call rand, you’ll
againget 17767, then 9158, then 39017! See, not so random.

Go ahead and run this program again, this time with a value of, say, 10 for n, as in the below; you
should see a list of 10 pseudorandom numbers.

./generate 10

Run the program a third time using that same value for n; you should see a different list of 10
numbers. Now try running the program with a value for s too (e.g., 0), as in the below.

./generate 10 0
Now run that same command again:
./generate 10 0

Bet you saw the same “random” sequence of ten numbers again? Yup, that’s what happens if you
don’t vary a pseudorandom number generator’s initial seed.

[Now take a look at generate.c itself with gedit. (Remember how?) Comments atop that file
explain the program’s overall functionality. But it looks like we forgot to comment the code itself.

3
https://www.cs50.net/resources/cppreference.com/stdother/rand.html

4
https://www.cs50.net/resources/cppreference.com/stdother/srand.html

5<15

This is CS50
Harvard College Fall 2011

Read over the code carefully until you understand each line and then comment our code for us,
replacing each TODO with a phrase that describes the purpose or functionality of the
corresponding line(s) of code. Realize that a comment flanked with /* and */ can span lines
whereas a comment preceded by // can only extend to the end of a line; the latter is a feature of
C99 (the version of C that we’ve been using). For more details on rand and srand, recall that you
can execute:

man rand
man srand

Once done commenting generate.c, re-compile the program to be sure you didn’t break
anything by re-executing the command below.

make generate
If generate no longer compiles properly, take a moment to fix what you broke!

Now, recall that make automates compilation of your code so that you don’t have to execute gcc
manually along with a whole bunch of switches. Notice, in fact, how make just executed a pretty
long command for you, per the tool’s output. However, as your programs grow in size, make
won'’t be able to infer from context anymore how to compile your code; you’ll need to start telling
make how to compile your program, particularly when they involve multiple source (i.e., . c) files.
And so we’ll start relying on “Makefiles,” configuration files that tell make exactly what to do.

How did make know how to compile generate in this case? It actually used a configuration file
that we wrote. Using gedit, go ahead and look at the file called Makefile that’s in the same
directory as generate.c. This Makefile is essentially a list of rules that we wrote for you that
tells make how to build generate from generate. c for you. The relevant lines appear below.

generate: generate.c
gcc -ggdb -std=c99 -Wall -Werror -o generate generate.c

The first line tells make that the “target” called generate should be built by invoking the second
line’s command. Moreover, that first line tells make that generate is dependent on
generate.c, the implication of which is that make will only re-build generate on subsequent
runs if that file was modified since make last built generate. Neat time-saving trick, eh? In fact,
go ahead and execute the command below again, assuming you haven’t modified generate.c.

make generate

You should be informed that generate is already up to date. Incidentally, know that the leading
whitespace on that second line is not a sequence of spaces but, rather, a tab. Unfortunately,
make requires that commands be preceded by tabs, so be careful not to change them to spaces
with gedit (which automatically converts tabs to four spaces), else you may encounter strange
errors! The -Werror flag, recall, tells gcc to treat warnings (bad) as though they’re errors
(worse) so that you’re forced (in a good, instructive way!) to fix them.

6<15

This is CS50
Harvard College Fall 2011

Now take a look at find.c with gedit. Notice that this program expects a single command-line
argument: a “needle” to search for in a “haystack” of values. Once done looking over the code, go
ahead and compile the program by executing the command below.

make find

Notice, per that command’s output, that Make actually executed the below for you.

gcc -ggdb -std=c99 -Wall -Werror -o find find.c helpers.c -1cs50 -1m

Notice further that you just compiled a program comprising not one but two . c files: helpers.c
and find.c. How did make know what to do? Well, again, open up Makefile to see the man
behind the curtain. The relevant lines appear below.

find: find.c helpers.c helpers.h
gcc -ggdb -std=c99 -Wall -Werror -o find find.c helpers.c -1lcs50 -1m

Per the dependencies implied above (after the colon), any changes to find.c, helpers.c, or
helpers.h will compel make to rebuild £ind the next time it’s invoked for this target.

Go ahead and run this program by executing, say, the below.

./find 13

You'll be prompted to provide some hay (i.e., some integers), one “straw” at a time. As soon as
you tire of providing integers, hit ctrl-d to send the program an EOF (end-of-file) character. That
character will compel GetInt from the CS50 Library to return INT MAX, a constant that, per
find.c, will compel find to stop prompting for hay. The program will then look for that needle in
the hay you provided, ultimately reporting whether the former was found in the latter. In short,
this program searches an array for some value.

In turns out you can automate this process of providing hay, though, by “piping” the output of
generate into find as input. For instance, the command below passes 1,024 pseudorandom
numbers to £ind, which then searches those values for 13.

./generate 1024 | ./find 13

Note that, when piping output from generate into £ind in this manner, you won’t actually see
generate’s numbers, but you will see find’s prompts.

Alternatively, you can “redirect” generate’s output to a file with a command like the below.

./generate 1024 > numbers.txt

You can then redirect that file’s contents as input to £ind with the command below.

./find 13 < numbers.txt

7<15

This is CS50
Harvard College Fall 2011

Let’s finish looking at that Makefile. Notice the line below.

all: find generate

This target implies that you can build both generate and f£ind simply by executing the below.

make all

Even better, the below is equivalent (because make builds a Makefile’s first target by default).

make

If only you could whittle this whole problem set down to a single command! Finally, notice these
last lines in Makefile:

clean:
rm -f *.o0 a.out core find generate

This target allows you to delete all files ending in .o or called a.out, core (tsk, tsk), £ind, or
generate simply by executing the command below.

make clean

Be careful not to add, say, *.c to that last line in Makefile! (Why?) Any line, incidentally, that
begins with # is just a comment.

And now the fun begins! Notice that find.c calls sort, a function declared in helpers.h.
Unfortunately, we forgot to implement that function fully in helpers.c! Take a peek at
helpers.c with gedit, and you'll see that sort returns immediately, even though find’s main
function does pass it an actual array. To be sure, we could have put the contents of helpers.h
and helpers.c in find.c itself. But it's sometimes better to organize programs into multiple
files, especially when some functions (e.g., sort) are essentially utility functions that might later
prove useful to other programs as well, much like those in the CS50 Library.

Incidentally, recall the syntax for declaring an array. Not only do you specify the array’s type, you
also specify its size between brackets, just as we do for haystackin find.c:

int haystack[HAY MAX];

But when passing an array, you only specify its name, just as we do when passing haystack to
sortin find.c:

sort (haystack, size);

(Why do we also pass in the size of that array separately?)

8<15

This is CS50
Harvard College Fall 2011

When declaring a function that takes a one-dimensional array as an argument, though, you don’t
need to specify the array’s size, just as we don’t when declaring sort in helpers.h (and
helpers.c):

void sort (int wvalues([], int n);

Go ahead and implement sort so that the function actually sorts, from smallest to largest, the
array of numbers that it’s passed, in such a way that its running time is in O(n?), where n is the
array’s size. Odds are you’ll want to implement Bubble Sort or Selection Sort, if only because we
discussed them in Week 3. Just realize that there’s no one “right” way to implement either of
those algorithms; variations abound. In fact, you’re welcome to improve upon them as you see
fit, so long as your implementation remains in O(n’). However, take care not to alter our
declaration of sort. Its prototype must remain:

void sort(int values[], int n);

As this return type of void implies, this function must not return a sorted array; it must instead
“destructively” sort the actual array that it’s passed by moving around the values therein. As we’ll
discuss in Week 4, arrays are not passed “by value” but instead “by reference,” which means that
sort will not be passed a copy of an array but, rather, the original array itself.

Although you may not alter our declaration of sort, you’re welcome to define your own
function(s) in helpers.c that sort itself may then call.

We leave it to you to determine how to test your implementation of sort. But don’t forget that
printf and, per Week 4’s first lecture, gdb are your friends. And don’t forget that you can
generate the same sequence of pseudorandom numbers again and again by explicitly specifying
generate’s seed. Before you ultimately submit, though, be sure to remove any such calls to
printf, as we like our programs’ outputs just they way they are!

Incidentally, check out Resources on the course’s website for a great little quick-reference guide

for gdb. If you'd like to play with the staff's own implementation of find in the appliance, you
may execute the below.

~cs50/pset3/find

And, as always, do run

submit50 ~/pset3

from time to time in order to back up your code to CS50’s servers!

Need help? Head to help.cs50.net

Now that sort (presumably) works, it’s time to improve upon search, the other function that

lives in helpers.c. Notice that our version implements “linear search,” whereby search looks
for value by iterating over the integers in array linearly, from left to right. Rip out the lines that

9<15

This is CS50.
Harvard College Fall 2011

we’ve written and re-implement search as “binary search,” that divide-and-conquer strategy
that we employed in Week 0 in order to search through phone book.> You are welcome to take an
iterative or, per Week 4, a recursive approach. If you pursue the latter, though, know that you
may not change our declaration of search, but you may write a new, recursive function (that
perhaps takes different parameters) that search itself calls.

Again, do run
submit50 ~/pset3

from time to time in order to back up your code to CS50’s servers!

The Game Begins.

] And now it’s time to play. The Game of Fifteen is a puzzle played on a square, two-dimensional
board with numbered tiles that slide. The goal of this puzzle is to arrange the board’s tiles from
smallest to largest, left to right, top to bottom, with an empty space in board’s bottom-right
corner, as in the below.®

13 || 14 || 15
.

Sliding any tile that borders the board’s empty space in that space constitutes a “move.” Although
the configuration above depicts a game already won, notice how the tile numbered 12 or the tile
numbered 15 could be slid into the empty space. Tiles may not be moved diagonally, though, or
forcibly removed from the board.

Although other configurations are possible, we shall assume that this game begins with the
board’s tiles in reverse order, from largest to smallest, left to right, top to bottom, with an empty
space in the board’s bottom-right corner. If, however, and only if the board contains an odd
number of tiles (i.e., the height and width of the board are even), the positions of tiles numbered
1 and 2 must be swapped, as in the below.” The puzzle is solvable from this configuration.

SNoneedtotearanythinginhah‘.
6 Figure from http://en.wikipedia.org/wiki/Fifteen puzzle.
7 Figure adapted from http://en.wikipedia.org/wiki/Fifteen puzzle.

10<15

This is CS50.
Harvard College Fall 2011

15|14 || 13 || 12

11 |10 9 | 8

Navigate your way to ~/pset3/fifteen/, and take a look at fifteen.c with gedit. Within this
file is an entire framework for The Game of Fifteen. The challenge up next is to complete this
game’s implementation.

But first go ahead and compile the framework. (Can you figure out how?) And, even though it’s
not yet finished, go ahead and run the game. (Can you figure out how?) Odds are you’ll want to
run it in a separate terminal window, as by opening Menu > Programming > Terminal, so that the
game fits in your window.

Phew. It appears that the game is at least partly functional. Granted, it's not much of a game yet.
But that’s where you come in.

Read over the code and comments in fifteen.c and then answer the questions below in
questions.txt.

i Besides 4 x 4 (which are The Game of Fifteen’s dimensions), what other dimensions does
the framework allow?

ii. With what sort of data structure is the game’s board represented?

iii. What function is called to greet the player at game’s start?

iv. What functions do you apparently need to implement?

Alright, get to it, implement this game. Remember, take “baby steps.” Don’t try to bite off the
entire game at once. Instead, implement one function at a time and be sure that it works before
forging ahead. In particular, we suggest that you implement the framework’s functions in this
order: init, draw, move, won. Any design decisions not explicitly prescribed herein (e.g., how
much space you should leave between numbers when printing the board) are intentionally left to
you. Presumably the board, when printed, should look something like the below, but we leave it
to you to implement your own vision.

15 14 13 12

11 10 9 8
7 6 5 4
31 2

11<15

This is CS50.
Harvard College Fall 2011

Incidentally, recall that the positions of tiles numbered 1 and 2 should only start off swapped (as
they are in the 4 x 4 example above) if the board has an odd number of tiles (as does the 4 x 4
example above). If the board has an even number of tiles, those positions should not start off
swapped. And so they do not in the 3 x 3 example below:

8 7 6
5 4 3
2 1

To test your implementation of fifteen, you can certainly try playing it. (Know that you can
force your program to quit by hitting ctrl-c.) Be sure that you (and we) cannot crash your
program, as by providing bogus tile numbers. And know that, much like you automated input into
find, so can you automate execution of this game. In fact, in ~cs50/pset3/ are 3x3.txt and
4x4 . txt, winning sequences of moves for a 3 x 3 board and a 4 x 4 board, respectively. To test
your program with, say, the first of those inputs, execute the below.

./fifteen 3 < ~cs50/pset3/3x3.txt

Feel free to tweak the appropriate argument to usleep to speed up animation. In fact, you're
welcome to alter the aesthetics of the game. For (optional) fun with “ANSI escape sequences,”
including color, take a look at our implementation of clear and check out the URL below for more
tricks.

http://isthe.com/chongo/tech/comp/ansi escapes.html

You're welcome to write your own functions and even change the prototypes of functions we
wrote. But we ask that you not alter the flow of logic in main itself so that we can automate some
tests of your program once submitted. In particular, main must only returns 0 if and when the
user has actually won the game; non-zero values should be returned in any cases of error, as
implied by our distribution code. If in doubt as to whether some design decision of yours might
run counter to the staff’s wishes, simply contact your teaching fellow.

If you’d like to play with the staff’s own implementation of fifteen in the appliance, you may
execute the below.

~cs50/pset3/fifteen

If you’d like to see an even fancier version, one so good that it can play itself, try out our solution
to the Hacker Edition by executing the below.

~cs50/hacker3/fifteen

Instead of typing a number at the game’s prompt, type GOD instead. Neat, eh?®

® To be clear, implementation of God Mode is part of this problem set’s Hacker Edition. You don’t need to
implement God Mode for this standard edition! But it’s still pretty neat, eh?

12<15

O

This is CS50.
Harvard College Fall 2011

As before, do run

submit50 ~/pset3

from time to time in order to back up your code to CS50’s servers!

How to Submit.

In ord

er to submit this problem set, you must first execute a command in the appliance and then submit

a (brief) form online.

O

Recall that you obtained a CS50 Cloud account (i.e., username and password) for Problem Set 1. If
you don’t remember your username and/or password, head to https://cloud.cs50.net/
look up the former and/or change the latter. You'll be prompted to log in with your HUID (or XID)
and PIN.

Just in case we updated submit50 since you started this problem set, open a terminal window
and execute the below, inputting crimson if prompted for John Harvard’s password.

sudo yum -y update

If there was something to update, you should see Complete! after a few seconds or minutes. If
there was nothing to update, you should instead see No packages marked for Update. If you see
any errors, try the command once more, try to restart the appliance and then try once more, then
head to https://manual.cs50.net/FAQs followed by http://help.cs50.net/ as needed
for help!

To actually submit, first open a terminal window and execute:’
cd ~/pset3

Then execute:

1s

At a minimum, you should see fifteen and £ind. If not, odds are you skipped some more steps
earlier! If everything is as it should be, you are ready to submit your source code to us. Execute:*

submit50 ~/pset3

When prompted for Course, input ¢s50; when prompted for Repository, input pset3. When
prompted for a username and password, input your CS50 Cloud username and password. For
security, you won’t see your password as you type it. That command will essentially upload your

9 . . .
Unless you decided to use dropbox.com and stored your files in, say, ~/Dropbox/pset3.

% pid.

13<15

This is CS50.
Harvard College Fall 2011

entire ~/pset3 directory to CS50’s repository, where your TF will be able to access it. The
command will inform you whether your submission was successful or not. If provided with the
URL of a PDF of your code (which further confirms its submission), right-click (or ctrl-click) the link,
then choose Open Link from the menu that appears to open the PDF in Document Viewer.

You may re-submit as many times as you’d like; we’ll grade your most recent submission. But take
care not to submit after the problem set’s deadline, lest you spend a late day unnecessarily or risk

rejection entirely.

If you run into any trouble at all, let us know via help.cs50.net and we'll try to assist! Just take
care to seek help well before the problem set’s deadline, as we can’t always reply within minutes!

Head to the URL below where a short form awaits:
https://www.cs50.net/psets/3/

Once you have submitted that form (as well as your source code), you are done!

This was Problem Set 3.

14 <15

