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Today’s Music

I Ke$ha
I Dancing with Tears in my Eyes
I We R Who we R
I Kiss N Tell
I Blow
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Today

I generate
I Makefiles
I find
I fifteen

I init()
I draw()
I move()
I won()
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TODO

1. comment generate.c!
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Generate

I ./generate n [s]
I n: number of random numbers to generate
I s: seed value
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rand

I generate uses a pseudo-random number generator
(rand())

I generates a random sequence of numbers given a seed
value

I same seed? same sequence of numbers
I helpful for debugging!
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Piping

I program > file
I send the output of program to a file called file

I program < file
I send the contents of file to the input of program

I program1 | program2
I send the output of program1 to the input of program2
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Piping Examples

I ./generate 1024 > numbers.txt
I write the output of generate to a file called numbers.txt

I ./find 13 < numbers.txt
I use the contents of the file numbers.txt as input to

find

I ./generate 1024 | ./find 13
I send the output of generate to the input of find
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Makefile

I specify what happens when you make something
I make will look for a file named Makefile in the current

directory

find: find.c helpers.c helpers.h
gcc -ggdb -std=c99 ... -o find find.c
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Makefile

name_of_target: files we need to use
command_to_run

I not just for compiling code!

clean:
rm -f *.o a.out core find generate
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Makefile

I Makefiles require tabs, not spaces
I gedit in the appliance will default to spaces!

I we’ve provided you Makefiles, so no need to edit
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TODO

1. implement sort
2. implement search
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find.c

I prompts the user for numbers to fill the haystack
I Ctrl-d tells find to stop asking

I then, searches haystack for the given needle
I calls sort and search, defined in helpers.c
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helpers.c

I sort: sorts the values[] array
I n is the size of values

I search: returns true if value is found in haystack, else
false

I n is the size of the haystack array
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sort

I sort values[] destructively
I when sort returns, the array passed as an argument

will be changed
I possible because arrays are passed by reference

I more about pass by reference this week!

I do NOT return an array (since type is void)
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Bubble Sort

I iterate over list, swapping elements in the wrong order
I elements “bubble” to their correct position with each

iteration

I once no elements have been swapped, list must be
sorted!
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Bubble Sort

while elements have been swapped
swapped = false
for i = 0 to n - 2

if array[i] > array[i + 1]
swap array[i] and array[i + 1]
swapped = true
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Bubble Sort

5 0 1 6 4
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Selection Sort

I build sorted list one element at a time
I start at beginning of list, find smallest element
I swap smallest element and first element
I move to second element, find smallest element, swap

with second
I no longer need to look at first element, since we know

it’s sorted!

I continue for every element
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Selection Sort

for i = 0 to n - 1
min = i
for j = i + 1 to n

if array[j] < array[min]
min = j

if array[min] != array[i]
swap array[min] and array[i]
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Selection Sort
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Selection Sort

0 1 4 5 6
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TODO

1. implement sort
2. implement search
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search

I currently implemented as a linear search
I does not require array to be sorted, which is why find

works fine
I O(n), slow!

I need to implement as binary search
I O(log n), fast!
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Binary Search

while length of list > 0
look at middle of list
if number found, return true
else if number is too high, only consider
left half of list
else if number is too low, only consider
right half of list

return false
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Binary Search

50 61 121 124 143 161 164 171 175 182
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Binary Search

164 171 175 182
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Binary Search

161 164
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Binary Search

I can be done iteratively or recursively
I iterative: keep moving left and right bounds
I recursive: keep calling search, but with different

parameters each time
I more about recursion this week!

I in both cases, need to determine middle element and
which half to cut off
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TODO

1. implement sort
2. implement search
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TODO

1. init()

2. draw()

3. move()

4. won()
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Where are we?

I main() written for you in fifteen.c
I accepts/parses command-line argument
I creates board
I checks if game is won and exits accordingly
I gets input, calls move tile function
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init

I int board[DIM_MAX][DIM_MAX];
I 2D array representing board state

I size of board given by d
I board array potentially larger than actual board (stupid

C can’t resize arrays)
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init

I board needs to contain starting state of board
I board[x][y] could contain element at (x, y)
I board[x][y] could contain element at row x and

column y

I board starts off in descending order
I if number of tiles is odd, swap 2 and 1
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init

I board also must contain the blank tile
I however, board must contain only ints

I choose some int value that will never appear on the
board

I #define!
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TODO

1. init()

2. draw()

3. move()

4. won()
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draw

I need to output the current state of the board
I remember, board[i][j] gives the value of the tile

I what i and j mean is up to you!
I make sure to print tiles in the right order!



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

draw

I only printf(“\n”) at the end of a row
I printf spaces between columns
I printf(“%2d”, 5); will print blank spaces before

number if number is fewer than 2 digits
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TODO

1. init()

2. draw()

3. move()

4. won()



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

move

I moving a tile is as simple as changing the board array
I however, not all moves are legal!

I blank tile must be next to tile to move
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move

I move accepts the number of the tile to move, not its
position

I need to find tile’s position by searching

I also need to determine where blank tile is
I do we need to search for it on every move, or can we

just remember where it is?

I if positions are adjacent, then values in board can be
swapped
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TODO

1. init()

2. draw()

3. move()

4. won()
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won

I won() checks if the game has been won, and returns a
boolean

I game is won when tiles are in increasing order
I first tile is a 1, second tile is a 2, etc.
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won

I need to iterate over board array and check each value
I make sure to look at every value in a row before moving

on to next row
I make sure to look at rows in order

I if any value is incorrect, then game cannot be won
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TODO

1. init()

2. draw()

3. move()

4. won()
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