
pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

pset3: Fifteen

Tommy MacWilliam

tmacwilliam@cs50.net

September 25, 2011



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Today’s Music

I Ke$ha
I Dancing with Tears in my Eyes
I We R Who we R
I Kiss N Tell
I Blow



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Today

I generate
I Makefiles
I find
I fifteen

I init()
I draw()
I move()
I won()



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

TODO

1. comment generate.c!



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Generate

I ./generate n [s]
I n: number of random numbers to generate
I s: seed value



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

rand

I generate uses a pseudo-random number generator
(rand())

I generates a random sequence of numbers given a seed
value

I same seed? same sequence of numbers
I helpful for debugging!



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Piping

I program > file
I send the output of program to a file called file

I program < file
I send the contents of file to the input of program

I program1 | program2
I send the output of program1 to the input of program2



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Piping Examples

I ./generate 1024 > numbers.txt
I write the output of generate to a file called numbers.txt

I ./find 13 < numbers.txt
I use the contents of the file numbers.txt as input to

find

I ./generate 1024 | ./find 13
I send the output of generate to the input of find



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Makefile

I specify what happens when you make something
I make will look for a file named Makefile in the current

directory

find: find.c helpers.c helpers.h
gcc -ggdb -std=c99 ... -o find find.c



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Makefile

name_of_target: files we need to use
command_to_run

I not just for compiling code!

clean:
rm -f *.o a.out core find generate



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Makefile

I Makefiles require tabs, not spaces
I gedit in the appliance will default to spaces!

I we’ve provided you Makefiles, so no need to edit



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

TODO

1. implement sort
2. implement search



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

find.c

I prompts the user for numbers to fill the haystack
I Ctrl-d tells find to stop asking

I then, searches haystack for the given needle
I calls sort and search, defined in helpers.c



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

helpers.c

I sort: sorts the values[] array
I n is the size of values

I search: returns true if value is found in haystack, else
false

I n is the size of the haystack array



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

sort

I sort values[] destructively
I when sort returns, the array passed as an argument

will be changed
I possible because arrays are passed by reference

I more about pass by reference this week!

I do NOT return an array (since type is void)



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Bubble Sort

I iterate over list, swapping elements in the wrong order
I elements “bubble” to their correct position with each

iteration

I once no elements have been swapped, list must be
sorted!



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Bubble Sort

while elements have been swapped
swapped = false
for i = 0 to n - 2

if array[i] > array[i + 1]
swap array[i] and array[i + 1]
swapped = true



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Bubble Sort

5 0 1 6 4



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Bubble Sort

0 5 1 6 4



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Bubble Sort

0 1 5 6 4



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Bubble Sort

0 1 5 6 4



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Bubble Sort

0 1 5 4 6



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Bubble Sort

0 1 5 4 6



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Bubble Sort

0 1 5 4 6



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Bubble Sort

0 1 4 5 6



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Bubble Sort

0 1 4 5 6



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Selection Sort

I build sorted list one element at a time
I start at beginning of list, find smallest element
I swap smallest element and first element
I move to second element, find smallest element, swap

with second
I no longer need to look at first element, since we know

it’s sorted!

I continue for every element



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Selection Sort

for i = 0 to n - 1
min = i
for j = i + 1 to n

if array[j] < array[min]
min = j

if array[min] != array[i]
swap array[min] and array[i]



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Selection Sort

5 0 1 6 4



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Selection Sort

0 5 1 6 4



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Selection Sort

0 1 5 6 4



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Selection Sort

0 1 4 6 5



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Selection Sort

0 1 4 5 6



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

TODO

1. implement sort
2. implement search



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

search

I currently implemented as a linear search
I does not require array to be sorted, which is why find

works fine
I O(n), slow!

I need to implement as binary search
I O(log n), fast!



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Binary Search

while length of list > 0
look at middle of list
if number found, return true
else if number is too high, only consider
left half of list
else if number is too low, only consider
right half of list

return false



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Binary Search

50 61 121 124 143 161 164 171 175 182



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Binary Search

164 171 175 182



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Binary Search

161 164



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Binary Search

I can be done iteratively or recursively
I iterative: keep moving left and right bounds
I recursive: keep calling search, but with different

parameters each time
I more about recursion this week!

I in both cases, need to determine middle element and
which half to cut off



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

TODO

1. implement sort
2. implement search



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

TODO

1. init()

2. draw()

3. move()

4. won()



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

Where are we?

I main() written for you in fifteen.c
I accepts/parses command-line argument
I creates board
I checks if game is won and exits accordingly
I gets input, calls move tile function



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

init

I int board[DIM_MAX][DIM_MAX];
I 2D array representing board state

I size of board given by d
I board array potentially larger than actual board (stupid

C can’t resize arrays)



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

init

I board needs to contain starting state of board
I board[x][y] could contain element at (x, y)
I board[x][y] could contain element at row x and

column y

I board starts off in descending order
I if number of tiles is odd, swap 2 and 1



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

init

I board also must contain the blank tile
I however, board must contain only ints

I choose some int value that will never appear on the
board

I #define!



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

TODO

1. init()

2. draw()

3. move()

4. won()



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

draw

I need to output the current state of the board
I remember, board[i][j] gives the value of the tile

I what i and j mean is up to you!
I make sure to print tiles in the right order!



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

draw

I only printf(“\n”) at the end of a row
I printf spaces between columns
I printf(“%2d”, 5); will print blank spaces before

number if number is fewer than 2 digits



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

TODO

1. init()

2. draw()

3. move()

4. won()



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

move

I moving a tile is as simple as changing the board array
I however, not all moves are legal!

I blank tile must be next to tile to move



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

move

I move accepts the number of the tile to move, not its
position

I need to find tile’s position by searching

I also need to determine where blank tile is
I do we need to search for it on every move, or can we

just remember where it is?

I if positions are adjacent, then values in board can be
swapped



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

TODO

1. init()

2. draw()

3. move()

4. won()



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

won

I won() checks if the game has been won, and returns a
boolean

I game is won when tiles are in increasing order
I first tile is a 1, second tile is a 2, etc.



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

won

I need to iterate over board array and check each value
I make sure to look at every value in a row before moving

on to next row
I make sure to look at rows in order

I if any value is incorrect, then game cannot be won



pset3: Fifteen

Tommy
MacWilliam

Generate

Makefiles

find

Fifteen

TODO

1. init()

2. draw()

3. move()

4. won()


	Generate
	Makefiles
	find
	Fifteen

