This is CS50
Harvard College Fall 2011

Problem Set 4: it

due by noon on Thu 10/6

Per the directions at this document’s end, submitting this problem set involves submitting source code
via submit50 as well as filling out a Web-based form, which may take a few minutes, so best not to
wait until the very last minute, lest you spend a late day unnecessarily.

Be sure that your code is thoroughly commented
to such an extent that lines’ functionality is apparent from comments alone.

Goals.
o Learn to use ncurses, a library for GUIs.
. Design and implement larger pieces of software.

. Master Sudoku.

Recommended Reading.

. Sections 1 —-13 of http://tldp.org/HOWTO/NCURSES-Programming—HOWTO/.

0<20

This is CS50.
Harvard College Fall 2011

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed in writing by the course’s instructor. Collaboration in the completion
of problem sets is not permitted unless otherwise stated by some problem set’s specification.

Viewing or copying another individual’s work (even if left by a printer, stored in an executable directory,
or accidentally shared in the course’s virtual terminal room) or lifting material from a book, website, or
other source—even in part—and presenting it as your own constitutes academic dishonesty, as does
showing or giving your work, even in part, to another student or soliciting the work of another
individual. Similarly is dual submission academic dishonesty: you may not submit the same or similar
work to this course that you have submitted or will submit to another. Nor may you provide or make
available solutions to problem sets to individuals who take or may take this course in the future.
Moreover, submission of any work that you intend to use outside of the course (e.g., for a job) must be
approved by the staff.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the course’s instructor.

You may turn to the Web for instruction beyond the course’s lectures and sections, for references, and
for solutions to technical difficulties, but not for outright solutions to problems on problem sets or your
own final project. However, failure to cite (as with comments) the origin of any code or technique that
you do discover outside of the course’s lectures and sections (even while respecting these constraints)
and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly. If the course refers some matter to the
Administrative Board and the outcome for some student is Admonish, Probation, Requirement to
Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local sanctions on
top of that outcome for that student that may include, but not be limited to, a failing grade for work
submitted or for the course itself.

Grades.

Your work on this problem set will be evaluated along four axes primarily.

Scope. To what extent does your code implement the features required by our specification?
Correctness. To what extent is your code consistent with our specifications and free of bugs?

Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?
All students, whether taking the course Pass/Fail or for a letter grade, must ordinarily submit this and all

other problem sets to be eligible for a passing grade (i.e., Pass or A to D-) unless granted an exception in
writing by the course’s instructor.

1<20

This is CS50.
Harvard College Fall 2011

CS Undergrads.

O

If you think you might concentrate or minor in Computer Science or if you’d like to hear about CS
goings-on plus jobs, subscribe to SEAS’s mailing list for CS undergrads via the URL below:"

https://lists.seas.harvard.edu/mailman/listinfo/cs-undergrads

So that vyour subscription is approved by SEAS, best to subscribe with your
@college.harvard.edu address.

You might also want to subscribe to some other CS-related lists at:

https://manual.cs50.net/Lists

The Real World.

O Recall how Wi-Fi works? If not, head back to
http://computer.howstuffworks.com/wireless-network.htm
for a quick refresher. I, um, won’t forget to ask about it on this week’s form!

CS50 Apparel.

[0 So as you may have noticed, CS50 has a tradition of its own line of apparel, designed by CS50’s

own students and staff alike. For past years’ designs, see http://store.cs50.net/2010 and
http://store.cs50.net/2009.

If interested in contributing a design to this year’s line, fire up your favorite graphics editor
(e.g., Photoshop), craft a PNG or PSD file that’s at least 200ppi, and email it to store@cs50.net.
(If the attachment bounces back because of its size, feel free to utilize dropbox.com or similar.)
Best to avoid incorporating “Harvard” and its various shields into your design for reasons of
trademark. And if unsure as to whether your design is, shall we say, appropriate, feel free to
confer with store@cs50.net first. No promises as to whether all submissions will make their
way into the store, but, generally speaking, the more the merrier!

For recommended resolutions, head to
http://zazzle.custhelp.com/app/answers/detail/a id/85. And for PNG and PSD
templates, head to http://www.zazzle.com/custom/guidefiles.

If, when the time comes, something at store.cs50.net catches your eye but reasons of
financial aid would stand in the way, simply drop me a note personally, and we’ll lend a hand.

1ThisURLisonIyaccessibIeoncampus.

2<20

This is CS50.
Harvard College Fall 2011

Getting Started.

O

Alright, here we go!

Launch VirtualBox (as by double-clicking its icon wherever it’s installed), and then boot the
appliance (as by single-clicking it in VirtualBox’s lefthand menu, and then clicking Start).

Upon reaching John Harvard’s desktop, open a terminal window (remember how?) and type the
below, followed by Enter:

sudo yum -y update

Input crimson if prompted for John Harvard’s password. For security, you won’t see any
characters as you type. Realize that updating the appliance in this manner requires Internet
access. If on a slow connection (or computer), it might take a few minutes to update the
appliance. Don’t worry if the process seems to hang if it decides to update a “package” called
cs50-appliance; that one can take several minutes.

If you see messages like Couldn’t resolve host or Cannot retrieve metalink for repository, those
simply mean that the appliance doesn’t currently have Internet access. Sometimes that happens
if you’ve just awakened your computer from sleep or perhaps changed from wireless to wired
Internet or vice versa. If your own computer does have Internet access (which you can confirm by
trying to visit some website in a browser on your own computer) but the appliance does not
(which you can confirm by trying to visit the same with Firefox within the appliance), try restarting
the appliance (as by clicking the green icon in its bottom-right corner, then clicking Restart).2 If,
upon restart, the appliance still doesn’t have Internet access, head to
https://manual.cs50.net/FAQs followed by http://help.cs50.net/ for help!

Once the appliance has been updated, you should see Complete! in your terminal window. If
there was nothing to update, you’ll see No packages marked for Update instead.

Just to be sure that everything worked, go ahead and execute that very same command again in a
terminal window (though not while its first invocation is still running):

sudo yum -y update

Again, input crimson if prompted for John Harvard’s password. (If only a few minutes have passed
since the last update, you might not even be prompted.) You should now see No packages
marked for Update, which means that your appliance is now up-to-date! If you see some error
instead, try once more, try to restart the appliance and then try once more, then head to
https://manual.cs50.net/FAQs followed by http://help.cs50.net/ as needed for help!

2 Alternatively, you can try typing:

sudo service network restart
But if that doesn’t work, best to restart the appliance.

3<20

This is CS50
Harvard College Fall 2011

Now go ahead and open up a terminal window (whether by opening gedit via Menu >
Programming > gedit or by opening Terminal itself via Menu > Programming > Terminal). Then
execute

cd
to ensure that you’re in your home directory, and then execute
git clone http://cdn.cs50.net/2011/fall/psets/4/psetd.git/

to download this problem set’s distro into your appliance. You should see Cloning into
pset4. .. and then your prompt again. If you instead see fatal followed by not found: did
you run, odds are you made a typo. Best to try again!

Once successful, you should find that you have a brand-new pset4 directory inside of your home
directory. You can confirm as much with:

1s

Navigate your way to that directory by executing the command below.
cd ~/psetd

If you list the contents of your current working directory (remember how?), you should see the
below. If you don’t, don’t hesitate to ask the staff for assistance!

debug.bin 133t.bin Makefile n00Ob.bin sudoku.c sudoku.h

Well those look like fun!

4<20

This is CS50
Harvard College Fall 2011

The numbers must be single.

O

Much like the Game of Fifteen, Sudoku is a game of logic involving numbers. But it's much more
interesting. Consider the puzzle below.

1 3|4 5
6 8
5 6|3
6 5 9
7 5
9 6|2 13
6|8 2
3 5
2 1|9 7

The object of Sudoku is to fill this 9x9 grid in such a way that each column, each row, and each of
the nine 3x3 boxes therein contain each of the numbers 1 through 9 exactly once. A whole bunch
of strategies exist, but the general idea is to figure out iteratively what numbers could go where.

For instance, let’s home in on one of the 3x3 boxes that already has a lot of numbers and work the
ol’ process of elimination. Consider the box in the middle, highlighted below.

1 3|4 5
6 8
5 6|3
6 5 9
7 5
9 6|2 13
6|8 2
3 5
2 1|9 7

Let’s see, that box already has a 1, a 2, but no 3. Where could we put 3? Well, 3 can’t go in that
box’s bottom row, since the box to the right already has a 3 in that row. And 3 can’t go on either
side of the 7, since the box to the left already has a 3 in that row. Aha! It must be that 3 belongs
in that box’s top row, in which case there’s only one place to put it! And so we fill in that spot
with a 3, per the below.

5<20

This is CS50
Harvard College Fall 2011

1 3|4 5
6 8
5 6|3
6 5 9
9 6|2 13
6|8 2
3 5
2 1|9 7

Let’s try another trick now. Rather than figure out where a number can go, let’s figure out where
a number cannot! Let’s home in on 9. Highlighted in gray now are all of the spots that 9 cannot
go, either because there’s already another number there or because there’s already a 9 in the
highlighted row, column, or box, per the below.

1 3|4 5
6 8
5 6 3
6 5 9
5
9 612 113
6 |8 2
3 5
2 19 7

Well, look at that! Looks like we’ve found a home for 9 within that box in the middle because
there’s only one place it can possibly go, per the below.

1 3|4 5
6 8
5 6 |3
6 5 9
9 5
9 612 113
6 |8 2
3 5
2 19 7

6<20

This is CS50.
Harvard College Fall 2011

Lather, rinse, and repeat these sorts of tricks enough times, and (assuming no PEBPAC) we’ll end
up with the solution below.?

N W OoOJO | &~dIN V| R
A= OV ININJO| WO
UV O INJOO | W (RPN
0 U |HIN| O O]FR (I NW
= O NJ (Nwju | O s
O N|WI=R | A U] O |N
(P, OJTW | UV (O]IN (= |N
W i UWIIN =R IN]JTO | &~ O
NN RIAAR OO OJTW |0 UV

If still not quite clear on how the game is played, feel free to turn to Wikipedia.

http://en.wikipedia.org/wiki/Sudoku

And if interested for your own edification in the mathematics and algorithmics behind the game,
you might also find these articles of interest:

http://en.wikipedia.org/wiki/Mathematics of Sudoku
http://en.wikipedia.org/wiki/Algorithmics of sudoku

0 Just for fun, we’ve included a whole bunch of puzzles (and solutions) at this document’s end. And
if you start finding yourself particularly addicted, odds are an implementation of Sudoku exists for
your mobile phone!

[0 Alright, now the real fun begins. You’re about to implement (most of) Sudoku in C.

Much like we provided you with some code for the Game of Fifteen, similarly have we provided
you with a skeleton for Sudoku. Whereas Problem Set 3 relied on ANSI escape sequences to
implement the Game of Fifteen’s “graphics,” though, this problem set introduces a library called
“ncurses” (formerly called “curses”) that will provide your implementation of Sudoku with a nicer
GUI (graphical user interface). To be sure, your program won’t look like Mac OS or Windows, but
it should look sexier than that Game of Fifteen! Not only does ncurses make it pretty easy to
integrate colors into a program (and even dialogs and menus), it also allows you to treat your
terminal window as a grid of chars, any one of which can be updated without affecting the
others. That sort of feature is perfect for a game like Sudoku, as you’ll be able to add numbers to
the game’s board one at a time without having to re-generate the whole screen after each move
(as you did with printf for the Game of Fifteen).

3Thesecond‘P’standsfor”puzzle,”andyou’reinthechair:
http://www.urbandictionary.com/define.php?term=pebkac

7<20

This is CS50.
Harvard College Fall 2011

Now, a typical terminal window is 80 characters wide by 24 characters tall (i.e., 80x24), and
ncurses addresses those characters by way of (y, x) coordinates, whereby (0, 0) refers to your
window’s top-left corner, (0, 79) refers to your window’s top-right corner, (23, 0) refers to your
window’s bottom-left corner, and (23, 79) refers to your window’s bottom-right corner.* Even if
your window boasts dimensions smaller or larger than these, the idea is the same. When it comes
time to fill in a blank with respect to Sudoku, you’ll simply update the char at some (y, x)
coordinate.

Now, how about that skeleton. Essentially, we’ve implemented an aesthetic framework for the
game so that you can focus on the more interesting parts: namely, the game’s features. In fact,
we’ve written the code (and comments) in such a way that you should be able to learn quite a bit
about ncurses and more simply by reading our code. And you’ll find that we’ve structured
Sudoku’s framework much like we did the Game of Fifteen’s. It’s in main that we have a big loop,
waiting and waiting for some user’s input. And it’s in separate functions that we (and, soon, you)
set the game up and respond to that input.

Because this game is meant to be more sophisticated (and fun) than the last, you'll also find that
we’ve given you more code this time. Don’t freak out, but it’s just over 600 lines. But know now
that none of it is all that complicated. In fact, if you look at each of the functions in isolation,
you’ll likely find each pretty straightforward. What’s neat is that when you combine so many
building blocks, you get some pretty compelling results. In fact, let’s take a look.

If not open already, open up a terminal window via Menu > Programming > Terminal. Then,
navigate your way to ~/pset4, as with

cd ~/psetd
and execute the (increasingly familiar) command below.
make

You should find a brand-new executable called sudoku in your current working directory. Go
ahead and run it by typing the command below. Be sure to run this command in a standalone
terminal window, not within gedit’s embedded terminal window.

. /sudoku
You won’t yet see our skeleton but instead the game’s usage:

Usage: sudoku nO0b|133t [#]

4 Annoyingly, yes, it’s (y, x) and not (x, y).

8<20

This is CS50
Harvard College Fall 2011

Not only does our skeleton support two levels of game play (n00b’ and 133t°), it also comes with
1024 different boards for each level. Ultimately, if you’d like to play a pseudorandomly chosen
n00b board, you'll want to execute just:’

./sudoku n00b

Per the menu along the game’s bottom, you can then hit Q to quit. Now, if you want to play a
specific board (e.g., n00b #42), perhaps one that defeated you earlier, you can load it up manually.
In fact, go ahead and execute

./sudoku n00b 42

to fire up our skeleton with n00b #42. You should see a GUI like that below.
eno CS50 Appliance 2.3 [Running]
Terminal - jharvard@appliance:~/pset4

File Edit View Terminal Go

Sudoku by John Harvard

y John Harvard

—t ——— + ——— +

[N]ew Game [R]estart Game

& Meru S @,’ B B (= @ Terminal - jharvard@app... L:J
JP &L O [Olleft

Notice how, for clarity’s sake, we use periods for blanks; underneath the hood, we represent each
of those same blanks with 0 (an actual int). So this is all pretty neat, but this skeleton lacks that
personal touch (not to mention support for moving the cursor). What do work out of the box are
[N]Jew Game, [R]estart Game, and [Q]uit Game. Go ahead and hit Q to quit.

5
http://en.wikipedia.org/wiki/Newbie
6
http://en.wikipedia.org/wiki/Leet
7 .
Those are two zeroes in n00b.

9<20

This is CS50.
Harvard College Fall 2011

Then open up sudoku.h with gedit. You’ll find in that file a whole bunch of constants that get
compiled into the program. Go ahead and change, at least, AUTHOR to your own name. Feel free
to change TITLE as well. To see the results, save your changes and quit. Then re-run make
followed by sudoku itself. You’ve just made the program your own!

Now go back into sudoku.h and play with all those mentions of color. It turns out that ncurses
deals with colors in pairs, whereby characters have both a foreground color and a background
color. By default, characters’ foregrounds are white and backgrounds are black. But clearly we’ve
overridden those defaults for our skeleton’s borders and logo. For now, you’ll want to leave that
enum alone, but feel free to change the values of any constants whose names begin with FG_ or
BG . Here are the colors that ncurses comes with:*®

COLOR_BLACK
COLOR_RED
COLOR_GREEN
COLOR_YELLOW
COLOR_BLUE
COLOR_MAGENTA
COLOR_CYAN
COLOR_WHITE

You will, of course, need to recompile your game to see any colorful changes. Not all that hard to
make one hideous game, eh?

Okay, now take a quick glance at Makefile. It should look pretty similar to the Game of Fifteen’s,
but take note that we’ve included a -1ncurses flag. And be sure not to change the two tabs in
that file to spaces! Annoyingly, make requires that targets’ commands be prefixed with actual
tabs, not spaces. Now take a look at, say, n00b.bin, but not with gedit this time! Instead,
execute the command below.’

xxd -b n00b.bin

Wow, a whole lot of numbers probably flew past. You’ve just looked at the contents of a binary
file. Inside that file are a whole bunch of 32-bit ints, 1024 x 81 = 82,944 of them, in fact, as that
file contains 1024 n0Ob boards, each of which includes 81 numbers and/or blanks (for a 9x9
grid)."® Similarly does 133t .bin contain 1024 133t boards.

Now that you’ve run sudoku at least once, you might also have noticed a file called 1og. txt that
wasn’t there when you first copied our code over. You're welcome to look, but you needn’t pay
much attention; it's generated by our framework in order to facilitate automated tests of your
code.

Alright, we’re really moving along. Only one file to go!

8 Though COLOR_YELLOW doesn’t always look yellow.

® Note that “n00b” is spelled with two zeroes!

1% \We could have used unsigned chars instead of ints, since Sudoku only needs numbers from 1 to 9, but we decided
that ints would be simpler, despite the additional cost in space.

10<20

This is CS50
Harvard College Fall 2011

Grr, there’s a lot of code in this one.
Go ahead and open up sudoku.c with gedit.
The best way to tackle this problem set is to start by understanding this file. We’ll get you started.

First take note of one of the file’s first lines:

#define CTRL (x) ((x) & ~0140)

Just as you can define what we know as constants with #define, you can also define “macros,”
short snippets of code that behave a little bit like functions but without the overhead (e.g., stack
frames) of an actual function call. This particular macro will enable you to detect control
characters from users, if you so desire. Out of the box, our skeleton already understands ctrl-L, a
keystroke meant to induce a redrawing of the game’s screen.

Now take a look at the struct called g just below that macro. Per Week 5’s first lecture, think of
a struct as a wrapper that groups related variables together. Inside this particular struct is a
whole bunch of fields, each of which can be accessed via the dot (.) operator (e.g., g.level).
Because g is a global variable, so are those fields effectively global as well. Truth be told, we could
have defined those fields as global variables themselves without using a st ruct, much like we did
for the Game of Fifteen. But because there are so many, all related to this game, we decided to
keep them together in one big struct called g. That way, it’ll be all the more obvious when these
variables are used that they’re not, in fact, locals.

Next notice our skeleton’s prototypes. Much like we divided the Game of Fifteen into functions
whose names described their particular role, similarly have we taken that approach here. But
more on those later.

Now dive into main. Best, though, if we not hold your hand too much through this one. We
daresay that learning to program is as much about writing your own programs as it is about
reading others’, particularly when your assignment (or job) is to build on the latter. Odds are
you’ll thank us some day for actually having comments in ours!

To be sure, there’s a lot going on in this file, but you don’t need to read each and every line (yet)
to get a sense of the program’s overall flow.

Do read each and every line in main, though. After all, that’s the function that drives this whole
program. And because our other functions’ names rather say what those functions do, you can
probably read main from top to bottom and have a pretty good idea of how the program
currently works. Notice, in particular, the do-while loop and switch with which the game
listens for user input.

Notice too that we’ve embedded a secret debug level that has 9 boards. You should find that
those boards, because they’re solvable so quickly, facilitate debugging.

11<20

This is CS50.
Harvard College Fall 2011

Next dive into some of the functions that main calls. A good one to start with is startup, as it
gets ncurses going. Notice how it calls a bunch of other functions that appear to configure
ncurses. Although we’ve commented each call, you might want to pull up the man page for some
or all of those functions, if only to get all the more comfortable with ncurses.

Next take a look at load board, the function that loads a n0Ob or 133t (or debug) board from
disk, depending on the value, if any, in main’s argv[2]. You needn’t understand how fopen,
fseek, fread, or fclose work for this problem set, but it is kind of neat how they get all those
bits into memory. What this function ultimately does is load 81 ints into the global array called
g.board. Not all that hard!

Let’s see, next take a look at draw borders. It's this function that creates the game’s, well,
borders. Of particular note in this function is how to use ncurses. Notice, for instance, that the
function first determines your terminal window’s dimensions using a macro called getmaxyx
(that comes with ncurses).'* It eventually uses those maxima to fill your window’s topmost and
bottommost rows with some color (and instructions). Notice how the function enables color,
specifically turning on the COLOR PAIR attribute that we called PAIR BORDER (back in
suduko.h). It then proceeds to draw the game’s borders by moving, left to right, from
coordinate to coordinate, laying down blank spaces. (Because we, at least, defined PAIR BORDER
with a red background, the results are “blank” lines filled with color.) But the function next lays
down some text, centering your program’s TITLE and AUTHOR in the topmost border using some
simple arithmetic. It then plants some instructions in the bottommost border, before turning
color back off.

Now take a look at draw grid. It’s this function that lays down the ASCII art that represents our
game’s board. Similarly does it first determine your window’s dimensions. It then uses those
values to determine coordinates for the grid’s top-left corner. (We decided that we wanted the
grid roughly in the middle of your window but slightly to the left, and so we came up with those
formulas by trial and error.) Rather than generate this grid character by character, this function
instead lays down whole strings (using ncurses’ mvaddstr function). Specifically, this function
moves the cursor to a specific coordinate and adds a string there. It then does that again and
again (in that for loop) in order to print most of the game’s grid. (Again, we determined most of
those coordinates by trial and error.) We then thought it’d be neat to remind the user of the level
and board that he or she is playing, and so we constructed a string on the fly using sprintf, and
then added it to the screen with a final call to mvaddstr.

Incidentally, if curious to learn more about all these ncurses functions, man is your friend.™

" |t's because getmaxyx is a macro and not an actual function that you don’t need to pass in its arguments by reference.

12 5ome functions don’t actually have their own man page, so you might need to execute man ncurses, and then look for the
Manual Page Name for some curses Routine Name of interest in the table that appears roughly halfway into ncurses’s own
man page.

12<20

This is CS50.
Harvard College Fall 2011

Next glance at draw logo. Notice how it bases its own coordinates on those of the grid. Notice,
too, how distorted our logo looks. That’s because we had to escape some of its backslashes with
backslashes of our own! Do feel free to alter the logo. You might find this site a fun time:

http://www.network—-science.de/ascii/

Now look at draw numbers. It's this function that fills that otherwise empty grid with the
numbers in g.board. That kind of knowledge is bound to be usefull Why all the arithmetic in
that function? Admittedly, it took a bit of trial and error to get right on our part, but it simply
ensures that the numbers end up where they should on the screen and not on top of the grid’s
own lines.

Now glance at show _banner and hide banner. Both pretty simple, these functions exist so
that you can show (and hide) messages to users. In fact, while using ncurses, do not use printf
as well. Bad things will happen.

Speaking of show banner, why don’t we also peek at show cursor. Recall that functions like
mvaddch and mvaddstr end up moving your cursor in order to add text to the screen. That’s
kind of annoying if you want to use that same cursor to play the actual game. And so it’s
necessary to remember where the cursor should be with respect to that grid. Glance back at that
global called g and you’ll see how we do it. This show cursor function relies on that struct to
return the cursor to where it should be after screen updates.

Let’s see, you needn’t worry too much about handle signal. Just know that when terminal
windows are resized (as from 80x24 to something larger or smaller), “signals” are generated. Our
code is “listening” for that signal so that we can respond to resizings by re-centering everything.

Okay, so that only leaves 1og move, redraw all, restart game, and shutdown. Those you
can handle! Take the same approach that we took here, walking through each function, pulling up
man pages as needed, and only move on once you understand each function’s flow.

So that’s everything. Not bad for 600+ lines.

Okay, a few questions for you. Create a file called questions.txt in ~/pset4 using gedit
(remember how?) and record in it your answers to the below!

i. Notice that main calls strcmp. What does it mean if strcmp, when passed two strings as
arguments, returns 0? (Hint: RTFM!)

ii. How would you rewrite the line below, excerpted from main, using keywords if and else?
int max = (strcmp(g.level, "debug") == 0) 2 9 : 1024;

iii. Under what circumstances might the call to sscanf below, excerpted from main, return 2
instead of 1?

sscanf (argv[2], " %d %c", &g.number, &c)
iv. Whatfields in g represent the coordinates at which the user’s cursor belongs?
v. What function (that we wrote) can you call to make the cursor actually appear at those

coordinates? (Hint: we told you a few paragraphs ago!)

13<20

This is CS50.
Harvard College Fall 2011

vi. Around what line number in main could you add additional case statements to handle
keystrokes besides N, R, and ctrl-L?

vii. Most n00b and I33t boards have lots of blanks. But how many blanks are in debug #1?
In debug #2? And in debug #97?

O Just like last week, best to run

submit50 ~/pset4
from time to time in order to back up your code to CS50’s servers!

[0 Because sudoku has a GUI, debugging it with gdb can be a bit tricky, since you probably don’t
want gdb’s output messing up the GUI itself. Not a problem, though! You can actually run
sudoku in one terminal window and gdb in another! So that you know how to do it, let’s give it a
try now.

Odds are at the moment you have just one terminal window open. If not there already, navigate
your way to ~/pset4 with cd, then run sudoku, as with this command:

./sudoku n00b 42

Now open up a second terminal window via File > Open Tab or File > Open Terminal (in Terminal
itself, not gedit).”® Navigate your way to ~/pset4 in that window as well, then run

pidof sudoku

to find the “process ID” (PID) of sudoku, a number that uniquely identifies that particular
program (aka “process”) among all others currently running in your appliance. If you see multiple
numbers separated by spaces (which means you’re currently running more than one copy of
sudoku), best to close all of your terminal windows and restart these steps.

Now that you know the PID of your running program, execute

gdb ./sudoku #

B you’d like to open two terminal windows side by side, you’ll likely find that the appliance’s default resolution is insufficient
to fit both on your screen. But if you install “guest additions,” per
https://manual.cs50.net/Appliance#How to Install Guest Additions, the appliance can be enlarged to fill your
whole screen.

14<20

This is CS50.
Harvard College Fall 2011

in your second terminal window (in which sudoku is not running), where # is that PID. Because
you’ve provided a process’s PID, gdb will proceed to “attach” itself to that process (not unlike a
snail to a shell)'® so that you can debug it remotely (i.e., in a separate window). After a whole
bunch of output, you should see gdb’s prompt. Let’s go ahead and set a breakpoint in
draw numbers, a function you looked at earlier. Execute the command below at gdb’s prompt in
gdb’s window:

break draw numbers

Now, when gdb attached itself to sudoku earlier, it actually suspended (i.e., paused) execution of
the latter. And so we need to tell gdb to resume execution of sudoku so that you can start
interacting with it again. Execute the command below at gdb’s prompt in gdb’s window:

continue

Okay, at this point in the story, both sudoku and gdb are running, each in its own window, with
gdb “watching” sudoku, just waiting for the latter to hit that breakpoint in draw numbers. Let’s
make that happen. In sudoku’s window, hit N to start a new game. Because of that do-while
loop (and switch) in main, restart game will get called, which will eventually call
draw numbers. Indeed, if you now look at gdb’s window, you should see that you’ve hit that
breakpoint in draw numbers! Go ahead and start executing draw numbers line by line by
executing

next

at gdb’s prompt again and again. You should find that, after each iteration of the inner loop in
draw numbers, a new number gets drawn on the board in sudoku’s window. Neat, eh?
Anyhow, executing next so many times will quickly get boring, so execute

continue

as soon as you’re bored; that’ll tell gdb to finish executing draw numbers. Since you yourself
haven’t written any code yet to debug, go ahead and quit sudoku now by hitting Q in its window.
Then execute

quit

at gdb’s prompt in gdb’s window to quit gdb too. Phew. Feels like a lot of steps, but you'll get
the hang of it before long. You will come to appreciate the power you now have!

Incidentally, if you find that sudoku or gdb isn’t behaving as we’ve promised, odds are that you
simply missed some step above or did something in the wrong order. Not to worry. Just quit both
sudoku and gdb, close your terminal windows, and start fresh with two new ones!

" Okay, this is pretty unlike that.

15<20

This is CS50.
Harvard College Fall 2011

When it comes time to chase down some bug in your own code, remember that you now have this
power!

[Now, the funny thing is that none of the 600+ lines we wrote actually implement Sudoku. But
that’s where you come in! Your challenge for this problem set is to implement a few features,
among them support for actual game play! Specifically, you must implement each of the
REQUIRED FEATURES below and any one (1) of the ADD-ONS.

This problem set is perhaps more about design than anything else, so do give some thought about
how best to implement some feature, given the game’s framework. With that said, you are
welcome to change most any aspect of our code if the change fits your design better. However,
what you must not change is anything related to logging, including 1og move. So that we can
automate some tests of your code, your program, no matter your changes, must still call our
implementation of 1log move after each keystroke from users, whether or not that keystroke
actually altered the board.

Alright, get to it! Here’s your menu of features. Know that we’ve enumerated the REQUIRED
FEATURES in the order in which they should probably be implemented.
REQUIRED FEATURES

O At the moment, the cursor is “stuck” in the board’s center. Enable users to move that
cursor up, down, left, and right by way of their keyboard’s arrow keys. You're welcome to
support other keys for movement as well, but you must support KEY UP, KEY DOWN,
KEY LEFT, and KEY RIGHT, constants that represent the characters fed to ncurses’ getch
function when arrow keys are pressed. (See getch’s man page for even more constants.)
You should only allow the user to move his or her cursor to coordinates where there are
actual numbers or blanks (i.e., the cursor should “hop over” one-character lateral gaps
between cells as well as the innermost crossbars that make up the grid’s lines), but you
should find that the arithmetic already implemented in show cursor helps with that!
Even though you might be tempted to make the cursor hop over numbers that came with
the board (i.e., that cannot be changed), resist the temptation; allow the cursor to be in any
one of those 81 cells.

O Enable the user to replace any blank with a number by moving his or her cursor over that
blank and then hitting a number from 1 to 9.

O Enable the user to change a number that he or she already inputted back to a blank by
hitting any of 0, a period, KEY BACKSPACE, or KEY DC or to some other number from
1 to 9 by hitting that number.” But do not allow the user to alter numbers that “came with”
the board.

I Any time the user changes the board, check whether the game has been won. If so, display
a congratulatory banner and prevent the user from changing the board further.

 Know that KEY BACKSPACE and KEY DC generally map to a keyboard’s Backspace and Delete keys, respectively, if they’re
actually present. Don’t worry if your own Backspace and/or Delete keys don’t seem to work, even though you’re listening for
KEY BACKSPACE and KEY DC; some keyboards send different codes altogether.

16<20

This is CS50.
Harvard College Fall 2011

Any time the user changes the board, check whether he or she has inserted a number where
it does not belong at the moment (because that same number already exists in the same
column or row or 3x3 box). If so, display a banner warning the user of the problem that
disappears the moment the user changes the board again (unless the change introduces a
new problem, in which case the user should again be warned).

ADD-ONS (IMPLEMENT AT LEAST ONE (1) OF THESE)
Make clear in the comments atop sudoku. c which of these features you implemented.

O

O

In addition to displaying a congratulatory banner, turn all 81 numbers green when the game
has been won.

In addition to warning the user of obvious mistakes with a banner, turn the column, row, or
3x3 box with the error red until the mistake is corrected.

Enable the cursor to “wrap around” from the top row to bottom, bottom to top, left to right,
or right to left if the user presses KEY UP, KEY DOWN, KEY LEFT, or KEY RIGHT,
respectively, one too many times.

Display numbers that “came with” the board in a different color than those that the user has
inputted.

Keep track (in seconds) of the amount of time that the user has been playing the current
board and allow the user to show or hide that clock at any time by hitting T. Be sure to stop

the clock the moment the game has been won.

Allow the user to undo the last change made to the board by hitting U or ctrl-Z.

Don’t forget to run

submit50 ~/pset4

from time to time in order to back up your code to CS50’s servers!

Don’t forget about help.cs50.net! And if you’d like to play with the staff's own
implementation of sudoku, you may execute the below.

~cs50/psetd/sudoku

Once your implementation is working, you might find that you feel a little like this:

http://www.youtube.com/watch?v=AXwGVXD7qEQ

17<20

This is CS50.
Harvard College Fall 2011

Sanity Checks.

Before you consider this problem set done, best to ask yourself these questions and then go back and
improve your code as needed! Do not consider the below an exhaustive list of expectations, though,
just some helpful reminders. The checkboxes that have come before these represent the exhaustive
list! To be clear, consider the questions below rhetorical. No need to answer them in writing for us,
since all of your answers should be “yes!”

Oododooooodoo

Did you create questions.txt and answer those questions?

Did you get all four arrow keys to work?

Can a user reach all 81 cells on the board via those arrow keys?

When the user moves his or her cursor, does it hop over the game’s grid (i.e., lines) automatically?
Can the user change blanks to numbers as well as numbers to other numbers?

Can the user change numbers (that he or she inputted) back to blanks?

Are you detecting when the game’s been won?

Are you preventing the user from moving the cursor once the game’s been won?

Are you warning the user with a banner when he or she inputs a number where it doesn’t belong?
Did you implement at least one add-on?

Are all of your files where they should be in ~/pset4?

As always, if you can’t answer “yes” to one or more of the above because you’re having some trouble,
do drop by office hours or turnto help.cs50.net!

How to Submit.

In order to submit this problem set, you must first execute a command in the appliance and then submit
a (brief) form online.

O

Recall that you obtained a CS50 Cloud account (i.e., username and password) for Problem Set 1. If
you don’t remember your username and/or password, head to https://cloud.cs50.net/
look up the former and/or change the latter. You'll be prompted to log in with your HUID (or XID)
and PIN.

Just in case we updated submit50 since you started this problem set, open a terminal window
and execute the below, inputting crimson if prompted for John Harvard’s password.

sudo yum -y update

If there was something to update, you should see Complete! after a few seconds or minutes. If
there was nothing to update, you should instead see No packages marked for Update. If you see
any errors, try the command once more, try to restart the appliance and then try once more, then
head to https://manual.cs50.net/FAQs followed by http://help.cs50.net/ as needed
for help!

18 <20

This is CS50.
Harvard College Fall 2011

To actually submit, first open a terminal window and execute:'®
cd ~/psetd

Then execute:

1s

At a minimum, you should see Makefile, sudoku.c, and sudoku.h as well as some .bin files.
If not, odds are you skipped some more steps earlier! If everything is as it should be, you are
ready to submit your source code to us. Execute:'’

submit50 ~/psetd

When prompted for Course, input ¢s50; when prompted for Repository, input psetd. When
prompted for a username and password, input your CS50 Cloud username and password. For
security, you won’t see your password as you type it. That command will essentially upload your
entire ~/pset4 directory to CS50’s repository, where your TF will be able to access it. The
command will inform you whether your submission was successful or not. If provided with the
URL of a PDF of your code (which further confirms its submission), right-click (or ctrl-click) the link,
then choose Open Link from the menu that appears to open the PDF in Document Viewer.

You may re-submit as many times as you’d like; we’ll grade your most recent submission. But take
care not to submit after the problem set’s deadline, lest you spend a late day unnecessarily or risk
rejection entirely.

If you run into any trouble at all, let us know via help.cs50.net and we'll try to assist! Just take
care to seek help well before the problem set’s deadline, as we can’t always reply within minutes!

Anytime after lecture on Mon 10/3 but before this problem set’s deadline, head to the URL below
where a short form awaits:

https://www.cs50.net/psets/4/

Once you have submitted that form (as well as your source code), you are done!

This was Problem Set 4.

16 . . .
Unless you decided to use dropbox.com and stored your files in, say, ~/Dropbox/pset4.

Y Ibid.

19<20

Puzzle 1 (Medium, difficulty rating 0.55) Puzzle 2 (Easy, difficulty rating 0.39)

Puzzle 3 (Hard, difficulty rating 0.75) Puzzle 4 (Medium, difficulty rating 0.49)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:46 2008 GMT. Enjoy!

Puzzle 5 (Hard, difficulty rating 0.61) Puzzle 6 (Medium, difficulty rating 0.53)

Puzzle 7 (Medium, difficulty rating 0.47) Puzzle 8 (Hard, difficulty rating 0.71)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:46 2008 GMT. Enjoy!

Puzzle 9 (Easy, difficulty rating 0.35) Puzzle 10 (Easy, difficulty rating 0.43)

Puzzle 11 (Medium, difficulty rating 0.56) Puzzle 12 (Easy, difficulty rating 0.35)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:46 2008 GMT. Enjoy!

Puzzle 13 (Medium, difficulty rating 0.50) Puzzle 14 (Medium, difficulty rating 0.53)

Puzzle 15 (Easy, difficulty rating 0.37) Puzzle 16 (Very hard, difficulty rating 0.84)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:46 2008 GMT. Enjoy!

Puzzle 17 (Hard, difficulty rating 0.60) Puzzle 18 (Medium, difficulty rating 0.48)

Puzzle 19 (Medium, difficulty rating 0.48) Puzzle 20 (Hard, difficulty rating 0.65)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:46 2008 GMT. Enjoy!

Puzzle 21 (Easy, difficulty rating 0.40) Puzzle 22 (Hard, difficulty rating 0.61)

Puzzle 23 (Easy, difficulty rating 0.45) Puzzle 24 (Hard, difficulty rating 0.60)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:46 2008 GMT. Enjoy!

Puzzle 25 (Medium, difficulty rating 0.56) Puzzle 26 (Medium, difficulty rating 0.50)

Puzzle 27 (Medium, difficulty rating 0.47) Puzzle 28 (Medium, difficulty rating 0.46)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

Puzzle 29 (Easy, difficulty rating 0.42) Puzzle 30 (Easy, difficulty rating 0.28)

Puzzle 31 (Easy, difficulty rating 0.40) Puzzle 32 (Easy, difficulty rating 0.44)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

Puzzle 33 (Easy, difficulty rating 0.43) Puzzle 34 (Easy, difficulty rating 0.38)

Puzzle 35 (Easy, difficulty rating 0.41) Puzzle 36 (Very hard, difficulty rating 0.86)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

Puzzle 37 (Easy, difficulty rating 0.44) Puzzle 38 (Easy, difficulty rating 0.45)

Puzzle 39 (Hard, difficulty rating 0.67) Puzzle 40 (Hard, difficulty rating 0.61)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

Puzzle 41 (Medium, difficulty rating 0.50) Puzzle 42 (Medium, difficulty rating 0.48)

Puzzle 43 (Easy, difficulty rating 0.35) Puzzle 44 (Very hard, difficulty rating 0.78)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

Puzzle 45 (Medium, difficulty rating 0.53) Puzzle 46 (Easy, difficulty rating 0.35)

Puzzle 47 (Medium, difficulty rating 0.48) Puzzle 48 (Hard, difficulty rating 0.60)

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

Puzzle 3 (Hard, difficulty rating 0.75)

Puzzle 2 (Easy, difficulty rating 0.39)

Puzzle 1 (Medium, difficulty rating 0.55)

el lalenla|t]u]|=|o] gle|(a|a]=|e|vn]a|~ | w|le ||t ||]a|—= | |||]la|~|e
w —~
S —~ w
ot |=|v]e|s|a] S|~ |c]lafn]|x]a|e|x glo (==l (e|=]lele[T] 2|2l (=]
] <
£ e
=l |n]e|la|n]s|n|a] Ele|T|aln o] |n]|n pl= ||]o|e|an|=|n|n] Sla|n|s]o|[x|n]e|—]w
g
> = ®
s |(=|ela|n|e]~]|a|n] Slafe|r]v|a|]on|w |~ Ele|s|e|vn|a|n]n|la |~ Slo|le|=la|wv|~]o|s|n
9 = =
2 = =
= |a]l=le|ale|a[s] Eln | |w]e|al=]ec|<]|a Sla|wv|a]l=|an|e |t]|w |~ Sle ||t ||| =
=] E=)
> £ £
w|la|la|t]|]—=|wn|v El=|o|a]n|s|loln|la|lv] SEln]|a|=]an|s|ole|v|al Cle]|a|s]=[e|n]le|a|n
= >,
= = A
Aot~ |n m431678592m432985176 Slanle|laleoe ||t]=|wv]|=
=
2 = &

e | oo oo |=] Slafn|elsr|(=[a]o|mn =] Sla]e |l |=|F]un|a|n] T |[—=|w]n|[a]|a]n v |~
N N N
941536287M728953416M517632948M579316482
- ||| |la]a|n |~ wln|lela|=|~]wv || n s |ajo|=[a]e|e|[n] S|t |vn|alo]le|=]|
- —_ <
wln|ejun|as]a =[] Tl a[~]x|e|a]n|n]je] S| |=~]T|wv|n]a]|e|a Pl || e |an|en]| |~
[—] [—] =
Aala|n|=|ea ||| |w I~ |t |ajo|vn|n]o | =~ Ple |lan|vnja o |~ jwv | — < Elun|a|eln|t|~=]e|a]|n
2 2 >
« « =
~|=|eajaa|wn|e]| |a Sl | |e]| [wn 8 N KB A RN I N ol R Eloe |t |ala|=|e]n |~ |wn
= = =
654382179m365721894m357164298 Sla|le|n]lt|n|]—=]|w|a
= = £
afle|laln|t|[=]n|n|e] Tla(=|o]u|a|s]n|e|n] Ble|[=|e]n|a|a]lr|n|] Sl |~ |n]ajw|n]s|a (v
= = =
= = 2
Tin|elaj=|ale|a|n] Sl=|wn|t]m| oo o a] S =~ (oo e oo < in Sl |n|n]oe|ec|lala|n |-~

=
= = =
olala]e |~ |n]t|o|=] 2l l=|eo|[alsx|nv o] 2lajn|ola|r|n]l=|~]|e] Tlafo|=]n v o]
N N N
561498723M682945173M465731829M659174238
| n|n]l=|wvn|afe|(x|a] sl]|e|a]=|wv|T]n|ale] cle|a|v]a|=|o]T (= |n Alen|t]l=|wvn|aan]e ||~
< Ao —~
3 r a
S NA Al A NS EX G ED B A Al A A B Gl KA R B GG A S B Ed SR EA B I B2 G B B R Ed A s
= =
£ £ e
clalnlja|t|ol=|n|n] Flala|lnja|le|n]=|t|e] Fln|=|n]a|t(vn]afe|ewe] Sl=|vn|lo]le | |n]aln |
St St =
5
> > I3
wile|els|=[n]la|n|a] Sl=|a|n]s|o|n]e|a|n] Slr(ala]uv|w|=]~]n|v S|l |a|=]e v |n
9] =
2 2 =
214769358m658793412m578364912 W528376914
739825416m943621587m361792845 .M961485372
= = o
—|laa|lajwn ||~ |=n m891346275 m857426391 Sl |=|alun|e|ow=]|a]|en
=
2 2 S
s (w|ofo|mn|n]|ala|=] Tl |o|rla|n|a]o|an|=] Sl=|T|e]|e|n|[a]n|[a|s] Tln|e|[c]afa|s]=]|wn]|
N N N
367291584M372518964M932157684M695713428

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:47 2008 GMT. Enjoy!

Puzzle 15 (Easy, difficulty rating 0.37)

Puzzle 14 (Medium, difficulty rating 0.53)

Puzzle 13 (Medium, difficulty rating 0.50)

A RIS | |\njen |\ |-~ md. N |=—Io |R |~ n || AN .omb7 N NN || uw_aas T | AR |\ |~
=
o |\ NI || =T |n | MS AN |\ |R® > || Mz I~ || |-~ | mo) W | o || |0 |
NN TN |||~ |0 | m NI ||| |0 |en m TN |V | =N |C|n Mo/m T I~ |R =N | AN | |\O
AN~ || R |~ |en | | NN || R |~ |\ T I~ |I|=|n | e N |\ | AN IO | | [N |~ |®
NI |\ IO ||| |- uw_a.cd. RXn= ||| |n uw_a.cl NI AN\ |XRT | .omboo SN || AP |0 |-~
S|~ | N[N | T |0 moo NI IO NN |0 | ms TN ||| | MS AN~ T I |~ | |n
AN |~ || NI || m O | R | || |- m RN |\ ||~ | N0 m NI |\ ||\ |0 |
3 -
TN |||~ || sl IR ||| |—- | ww NN AN | T | R[N~)8 oI ||~ ||
RN NN | T D\ .Wasl ST |n |0 |~ | Mo-/ T R[N | [N |- |0 m AN ||V RO |- |n
O |||\ NN | R MYQ/ RN || || \O mz A NI | |\n T |0 |\O uw_aaz W |=—jen | |O R |~ |
QAN |= W\ |F |O]en |0 |~ ..mv7 NI || A R |- .m 0NN |IS T | |N = || M’/O RN | |n AT |-
AT |\ IO |||~ |en wz Q| I | ||~ |0 | Mrﬂ R I[N | || ms A ™~ | | > || R
LB B B = o\ I VR Mool =B - N A m NI~ |R= || | T | m T |||\ ||| || m T | NR |\ =N \O

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:48 2008 GMT. Enjoy!

Puzzle 26 (Medium, difficulty rating 0.50) Puzzle 27 (Medium, difficulty rating 0.47)

Puzzle 25 (Medium, difficulty rating 0.56)

~
N IR |V~ | I~ || m528413796 m285613497 uwb725816394
ATV |=|n |0 | M274931568 M152846379 ..mv396785412
A | | || | T | M483126975 M346791852 W967138245
T IR |||\ | m162759483 m817562934 %481259763
TN AR || |\O |- W |en | |[O |R [~ |\ | S | [N | |XR A\ |~ oI | | AT |- |
AR\ |n |~ || M298756413 M471983625 M238741965
N |ICIN || T |0 m743981562 m263547918 ﬁ567289341
W |en IS0 |||\~ M728195364 M649178325 M457261983
R |- ||n |\ | m351264879 W352694781 MS96345721

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:48 2008 GMT. Enjoy!

Puzzle 38 (Easy, difficulty rating 0.45) Puzzle 39 (Hard, difficulty rating 0.67)

Puzzle 37 (Easy, difficulty rating 0.44)

|t lo]l=|v]|le]la|~|a %8 AR AN EY A ﬁ.l nijlale|s|ale|e|n aft|[=]n|o|a]n|=]|e
ale|v]a|e|t]o|n]|~ Mbl nlela|o|aln|e|a Mb4 e lelo|ln|~]un|la|a M el |al=|~|a]t|n]|
~la|=]o|an|a]n|s]|e WZ alele|=]|wn]s|n]e W3 wlala|wvw|e]ls |~ .mb7 nlele|wv|t]=|a]a
o (=[x]un|e|a]l=|a]|n Mw s [a|o]a|n|~=]e v |~ Mw s ela|=[n]e]e|a]l Zlala[m]w]n]|e]e |+~
Al |lalt|oe=]~|e]|wn w.nu_,9 - |wnle|a|=]en|w | w.nu_,7 al=lw o]l |n]| m s |le|n]a|~|=]a]w |n
el |s]n|la|=]s|w]|a ..m ~[e|n]oe|vn|[s]a|~]|a ..m o]t ||a]e v |~ M,l o]t ale]n ||
ot
- [=~|en]a|s|wn]e|a]|x MS ~|al=|a]en]eo |]|v M6 ~|ol=|a|s]n]a|n ®3 el |s|wv]eo|e]|a
ni|w|lele|lalan]la =] m o |=la|t|e]ls]|a|n m al|l=|gt]n|w|v]a|x]|e m nila|lelo || |—]|
s |a|ale|~=]ow]n|n |~ m ol lt|a]uv|n|o]=|a]n m alen|vw]o|la|=]=]|<]|® m o |]lale|~]a|wn]|en
~ 3 —
elon|el=|clalt|aln] Sla|=|c]t|wn|n]ale|e] S|t |o|w]n|a|[a]=[e[=]]~ [wn|[n]a|[e|e]a|T]|
+ |~ |afe|wn|en]an ||~ MbS ni|t]l=|e|lalaln |~ .mb9 - lenle|=]|e]la|n|< Mb6 s (ale|~[wn]ow|a]|n
a|l=|w]a|s|o]e|=~]|n W6 alnlo|(~]|a]w =] MY7 alel=|wvn|x]e|n]|a W7 alels|a|n]w|~]e
~lalg]ulea]|=]e e]| m |t |ale]|a]|=]e|wn]|w m o ln|s]u|s|e]a|~]|a m ale|ale ||~ |
£ E £
=|w || fe|afn|r|n] Slnle|~|a|r|e]|e|afa] gl=]n|a]e|afnfr|s]e] S|rfe|~]o|m|n]a]x|n
wle|lan]lt|a|n]n|~]|a ..m NN A R .m6 +|ala[=]|=]en | |wn ..m e |ln]e|rt|a]ls|a |~
nle|s]a|=[s]afn]|e M4 wlela|afwv]n ||~ WS NI EY R ™ MS s l=|ala]e |~]w
el |afv]=|a]|x m Aale|alen|—=]|<]e|e |n m ale || |~]wn|a]|en .Ao../. Al=|=~]n]e|e]s|wv]|a
ala =] |o]~]|wn]| m —len|w]o ||t |a]a m o=t |e|wv]~]|a]| m wla|o|u|n|s]=]|mn]|a
v e|lala == |n]| ala|l=le|st|wv]=|en]|x —[en|w]ale|a]o ||~ | |a]e|n|wv]n|a]|~
al|l=|en]o |t |wv]ale |~ m wle|ln]e|lal~]s|a]|n m2 O e]=|o|x]en|an]|wn m5 ~loelal=lon]lale |
s [~|o]a|n|fo]l=|a]|wn .mb4 n]|]|o]=]e|a ..omb9 s |elen|v|=]e|~]|x ..omb3 - lale [t]e]~ |wn]w
elafla]=|wv|s]en|=]|x MW6 N I B ES W6 alafo|[=]|n]=|n]|= W9 alnls|e|=lafw |~
e |=|e|lala]s|n]|e m ni|w|lalt|e|a]n|=]|~ wum w|=|t|=]|a|wv]a|e|en wum ~|le |t |lala]n|=]e
~|wn|s]n|e|o]a|=]|a M,l nlala|w|=]le|n| ..m,,S ~|enlt|ale]| |~ ..m,,6 A=l o |=]s|an]en
afla|w]s||~=]e|w]|n ®7 alelen|wvn|s]afw |~ M7 aflela|s|[=1wv|en | Ml alle|ln|a]o|s|wn
w|t|e|un|la|n]s|a]|~ m al=|lu]e|=|e]a]|t]|en m | |=le|n|o]t|a]a m alt|ele|w|o]=]n]|a
—len|~]o|w|a]n|s]|a m |t |o]l=|a|a]n|x]|e m < | |a]u|n|a]l=|~]|e m w|wn|a]l=|la|s]e |~]|a

Generated by http://www.opensky.ca/~jdhildeb/software/sudokugen/ on Sat Oct 18 07:07:49 2008 GMT. Enjoy!

