This is Week 7

Jason Hirschhorn
Fall, 2011

Agenda

* Announcements * Advanced Data Structures
* Review * Hash Tables + hashtable.c
« Problem Set 5 * Binary Search Trees + bst.c
* GDB * Tries
* Valgrind * Problem Set 6
* Basic Data Structures * Resources
* Stacks - //TODO
* Queues
* Linked Lists
* Inserting
* Finding

* Deleting

Announcements

* Problem Set 6 Walkthrough (Sun, 7pm, NW B103) —
https://www.cs50.net/psets/

* Office Hours — https://www.cs50.net/ohs/
* NOT @ Harvard innovation lab this week

* Lecture videos, slides, source code, scribe notes —
https://www.cs50.net/lectures/

* Bulletin Board — http://help.cs50.net

* Problem Set 5’s Scavenger Hunt
* Ends 10/31
* Section pride!

* Problem Set 6’s BIG BOARD
* More section pride!

Review

pset5 - Correctness

// allocate space for block from the file
BYTE *buffer = malloc(sizeof(BYTE) * BLOCK);

// check for successful malloc call

if (buffer == NULL)

{
printf(“Could not allocate the memory.\n”);
return 1;

¥

// free the buffer
free(buffer)

pset5 - Design

// ensure second argument is an integer
for (int i = @, n = strlen(argv[1l]); 1 < n; i++)
if (lisdigit(argv[1l][i]))
return 1;

// save resize factor
int factor = atoi(argv[1l]);

// ensure valid resize factor
if (factor < 1 || factor > 100)
return 2;

psetb - GDB

jharvard@appliance (~/pset5/bmp): gdb resize

(gdb) break main
(gdb) run 4 smiley.bmp bigsmiley.bmp

(gdb) next

(gdb) print bi
$1 = {...biSizeImage = 3072...}

(gdb) continue

pset5 - Valgrind

* Analyzes your code for memory mismanagement
valgrind ./resize 4 smiley.bmp bigsmiley.bmp
* Good

HEAP SUMMARY:

in use at exit: © bytes in © blocks
total heap usage: 3 allocs, 3 frees, 800 bytes

pset5 - Valgrind
* Bad
HEAP SUMMARY:
in use at exit: 96 bytes in 1 blocks

total heap usage: 3 allocs, 2 frees, 800 bytes

LEAK SUMMARY
definitely lost: 96 bytes in 1 blocks

Rerun with -leak-check=full to see details

Basic
Data Structures

Stacks

* LIFO
* Lastin, first out

* Insert objects on the top (“push”)
* Remove objects from the top (“pop”)

B N -~ S

Queues

. Britic] : E |
* FIFO
* Firstin, first out
* Insert objects at the end
* Remove objects from the beginning

]
-

[I

Linked Lists

Resources from http://www.cs.grinnell.edu/~walker/courses/153.sp09/readings/reading-lists-c.shtml

Linked List

* A list of structs

* “Nodes”
typedef struct node {
int num;
struct node *next;
} node;
num next num next

42 50 | nu

node node

Finding an Object

Step 1. Prepare to check first item

first
2 = 4 W 5 ——p 8
item to be
checked
Step 20 Movwve to second item
first

2 | — 4 | — 6 | —p 8

C item to be

checked
Step 3. Move to next item
first
2 B — ! —— 5 —+—p 8
C item to be
checked

Step 4. Item found
first

2 | f—w 4 | ——W 6 | ——w 8

item
desired

Inserting an Object

Original L ist

first
L 2 —_ 4 —_P 5 p 8 /

List with 5 added

first
L 2 —_-

Deleting an Object

Original List
first

Step 1. Find item to be deleted
first

2 | d— 4 | — 6 | —p 8

([tem to be

deleted

Step 2: Change previous pointer

first
2 B '] _/61:_ 8
(Item to be

deleted

Step 3. Throw away old item
first

Advanced
Data Structures

Hash Tables

* Array + a hash function

Step 1
* Key

Step 2
* Value = hash_function(Key)

Step 3
* Array[Value] = Key

hash
keys function hashes
00
John Smith
01
Lisa Smith -
03
04
Sam Doe

05

Sandra Dee)
15

Hash Functions

* Good hash functions are
* Deterministic = it behaves predictably
* Well distributed = uniformly distributed

Problems

* What if a key maps to a value larger than our hash table?
* %

* What if two keys map to the same value?

* Probing = find the next open spot
* Separate chaining = linked list from that spot

Binary Search Trees

* Like a linked list, but nodes are arranged in a “tree” shape

* Each node has <= 2 child nodes

* Left child node < parent node
* Right child node > parent node

typedef struct node {
int value;
struct node *left
struct node *right;
} node;

Binary Search Trees

(8]
© 10

ORNO 14
ONOI®

Tries

* Like a tree, but each node can have more than 2 children

Example
* Atrie that stores words

* Each child node represents the next letter in some word
* Each node has <= 26 child nodes

typedef struct node {

bool is word;

struct node *children[27];
} node;

Tries

e \
S
e
o*
[~
| r
| % kX m*X

Problem Set 6

Resources

Google
* https://www.google.com/

C Reference Guide
* https://www.cs50.net/resources/cppreference.com/

stackoverflow
* http://stackoverflow.com/

Google
* https://www.google.com/

Google

// TODO

load

* Put a text file in the dictionary

check

* |s the word in the dictionary?
° size

* How big is the dictionary?

unload
* Bye, bye dictionary

Initial Questions
* What type of dictionary (i.e. data structure) do we want to create?

* Since we want to access our dictionary across multiple functions,
where should we put it in memory?

That was Week 7

http://www.youtube.com/watch?v=C7hTAp6KrGY

