Building Applications in C

Mike Teodorescu ‘11
Microsoft

Hello

CS50 TF ‘09, ‘10
CS concentrator class of 2011

Worked on Windows Home and Small Business
Server 2011 as an intern in Redmond, WA

Now engineer in the Application Virtualization
team at the Microsoft New England Research and
Development Center (NERD)

Microsoft NERD

* Teams:
— Application Virtualization
— Microsoft Research
— Sharepoint Workspace 2010
— Office 365
— Microsoft Lync
— Interactive Entertainment Business
— Microsoft Advertising
— Microsoft-Novell Interoperability Lab

* Address: 1 Memorial Drive in Cambridge

Allows applications to run in separate virtual
environments, eliminating conflicts with other

applications or with different versions of the
same application.

Previously incompatible apps can be run
simultaneously

Fully functional Windows apps are streamed on
demand to users’ desktops

We work on very large scale systems
More at

TOC

Intro to C#

Hello World
Object-Oriented concepts
Collections

Control Flow

File I/O

Strings and REGEX

XML and LINQ Queries
Exception Handling

10. Debugging

1.
2.
3.
4.
5.
6.
7.
8.
9.

Intro to C
Object-oriented programming language

Type-safety guaranteed

— cannot store data of one type in a location
corresponding to a different type

— cannot have uninitialized variables

Garbage collection — automatic memory
management (no need to worry about freeing
memory you allocated)

Built-in datastructures that handle their own sizing

Exception handling allows detection and recovery
from errors during execution of your code

Intro to C# (2)

* Code is sandboxed into a Virtual Execution System
which ensures safe code execution and memory
management

CH# comes with the .NET Framework Class Library, which
means it is packed with libraries that simplify many
common tasks that you would otherwise have to code:

— XML and string parsing

— web programming

— data structures

— scalable networks and server programming
— database management

— GUI programming, and others...

Parallel programming made easy (Parallel Computing
Platform — takes care of the lower level coding for you)

Intro to C# (3)
Standard types are built-in

You can create your custom types through OO

CH# enables component-oriented programming,
which means you can create self-contained units
of functionality that can communicate

Your code is a living ecosystem — extensible and
easy to maintain.

The goal is to allow you to spend more time on
the concepts and less on lower-level details. It
enables you to think more about your solution
and the abstract model behind it.

Development Environment
* Some benefits of using Visual Studio 2010:

— Multitude of languages you can use (Visual C#, Visual
C++, VB) — the .NET languages all use a common type
YA E

— Auto-Complete

— Auto-formatting

— Cross-platform development

— Multitude of code templates and stubs
— Debugging made easy

— Integrated GUI design tools

— Integrated Testing tools

Development Environment (2)

 Source control

* Can develop anything from a console app to:
— cloud development,
— GUI apps,
— web servers,
— web apps,
— testing frameworks,
— Windows 8 apps,
— Windows Phone apps,
— Office add-ins,
— to very large collaborative projects

TOC

Intro to C#

Hello World
Object-Oriented concepts
Collections

Control Flow

File I/O

Strings and REGEX

XML and LINQ Queries
Exception Handling

10. Debugging

1.
2.
3.
4.
5.
6.
7.
8.
9.

Basics

Using statement
Referencing

Namespace - see hierarchy denoted using .
— System

— System.Collections

— System.Collections.Generic

Class

Method

DEMO

TOC

Intro to C#

Hello World
Object-Oriented concepts
Collections

Control Flow

File I/O

Strings and REGEX

XML and LINQ Queries
Exception Handling

10. Debugging

1.
2.
3.
4.
5.
6.
7.
8.
9.

Object Oriented

* Programming with classes makes for more
extensible code (allowing you for instance to
define your own types and control what is
accessible

Encapsulation = hide internal implementation
details of a class (data hiding, this is private)

Abstraction = public interface of a class, the
external details such as actions that the class
can perform (this is visible to everyone)

00 (2)

* To create an object of the type defined in a
class, we need to instantiate that class. To be
able to do so, the class must define a
constructor:

myClass foo = new myClass();

Constructors can be overloaded — we can

create several methods with the same name
but different parameters (thus different
signatures)

OO0 (3)

* Modifiers
— private — only accessible inside the class
— public — accessible by everyone

— static — data and methods that can be accessed
without creating an instance of the class

— const — for constants

* Scope: Namespaces, classes, and methods

OO0 (4)

* A method in a class is a function — it’s basically an
action that an object defined by the class can take

* A property in a class is a data item whose read and

write access is defined by you (require a get and a set:
public class Student
{
//privately set
private string name;

public string Name
{
//public read
get
return name;

OO0 (5)

Inheritance: a class can inherit all
characteristics and actions from a parent class

The child class can have its own private data,
added methods that are not found in the
parent, or redefine the behavior of inherited
methods

A class can only inherit from one parent
DEMO

TOC

Intro to C#

Hello World
Object-Oriented concepts
Collections

Control Flow

File I/O

Strings and REGEX

XML and LINQ Queries
Exception Handling

10. Debugging

1.
2.
3.
4.
5.
6.
7.
8.
9.

Arrays

// Single-dimensional
int[] arrayl = new int[10];

// Declare and set values for a single-dimensional
array

int[] array? new int([] { 1, 2, 3 };

// OR
int[] array?2 {1, 2, 3 1};

// Declare a 2D array
int[,] twoDimensionalArrayl = new 1int[2,1];

// Declare and set 2D array
int[,] twoDimensionalArray?2 {13, {2} 1}

Array Initialization and Indexing

Class Program

{

static void Main ()
{
int[] array = new 1nt[10];
for(int 1=0; 1 < array.Length; 1i++)

arrayl[1l] = 1*1;

Array Class Static Methods

* void Clear (array, 1ndex, len) -
sets a range to null, or zero, or false, depending
on the element type of the array

int BlnarySearch (array, value,
comparer) -returnseither the index of the
searched value, or a negative number if the value
is not found

* void ForEach (action) - performs

the action on each element of the
array

Generic Collections

Work with built-in and developer-defined types
(thus “Generic” — all types you define inherit from
object)

Immediate benefits: type safety

Are defined in the System.Collections.Generic
namespace

Provide a large variety, ready for your use: Lists,
Dictionaries, SortedLists, LinkedLists,

SortedDictionaries, Sets, Stacks, Queues, and
more...

List<T>

* Unlike an array, a List dynamically sizes as
needed

* |f you need sequential access to elements, use

a LinkedList<T>

* Lists support adding an element or a range of
elements at the end of the list (Add and

AddRange)

Dictionary <Tkey, Tvalue>

e Useful methods:
— ContainsKey,

— ContainsValue,

— Remove (removes the value associated with the
passed key)

— Clear

— Add (will throw an exception if key already exists

- must check if the dict contains the key you try
to add)

— TryGetValue (gets the value associated with the
key you're passing to it)

More Advanced

* For future development interests:

Thread-safe

collections (ConcurrentDictionary)

Readily usable in System.Threading.Tasks.Parallel
(generally the task parallel library makes

multithreac

ed programming projects simpler to

develop by taking care of some lower level details)

Control Flow

* |f/else, switch, for, while, do while, are the
same
e FOREACH statement — neat since we have

datastructures that have an enumerator
defined on them (such as lists, dicts, etc)
foreach(var keyvalue in dictionary)

{...}

DEMO for data structures bundled with Strings
demo

TOC

Intro to C#

Hello World
Object-Oriented concepts
Collections

Control Flow

File I/O

Strings and REGEX

XML and LINQ Queries
Exception Handling

10. Debugging

1.
2.
3.
4.
5.
6.
7.
8.
9.

Strings and REGEX

Built-in types char and string
Empty string is String.Empty or “”
Unassigned string is a null

Can easily create strings from other objects by
calling .ToString()

String.Compare(string, string)
String.Concat(string, string)
String.Split(tokenChar)

REGEX (1)

* Regular expressions enable you to perform pattern
matching

* Require using System.Text.RegularExpression

* Steps:
— Define a pattern you wish to match (this is of type string)
— Regex expression = new Regex(pattern);
— expression.lsMatch(stringYouWishToMatch);
OR

— MatchCollection list =
expression.Matches(stringYouWishToMatch);

(this is the set of all matches by applying the regex repeatedly)

REGEX (2)

* Patterns:
? matches preceding element 0 or 1
+ matches preceding element 1 or more times
* Matches preceding element O or more
\d matches decimal digit (equivalent to [0-9])
\w matches an alphanumeric char (equiv to [a-zA-Z_0-9]
{p} matches preceding element exactly p times
{p,q} matches preceding element at least p but less than g times
. matches any character except \n
[] matches the character within the brackets
[»] NOT (e.g, [*0-9] matches everything not O thru 9)
\s matches a space

REGEX (3)

* Groups: you can designate groups within your
pattern using ()

 Example patterns:
[0-9]*

\d{3\w+
([a-zA-Z"0-9]){3,5}(\d*(\w+))
(\d*(\w+)?)+

FILE I/O

* Covered in Strings REGEX DEMO:
— Path builder
— Reading from a stream
— Writing to a stream

— Also featured: starting a child process and closing
that process

TOC

Intro to C#

Hello World
Object-Oriented concepts
Collections

Control Flow

File I/O

Strings and REGEX

XML and LINQ Queries
Exception Handling

10. Debugging

1.
2.
3.
4.
5.
6.
7.
8.
9.

XML and LINQ

* This section will show you how easy it is to create
an XML parser with just a few lines of code

* LINQ is the querying mechanism (can be used for
also for databases)

 We will need:
— using System.Xml.Ling
— using System.Xm

— using System.Collections.Generic

XML Examples

 An XML element corresponds to the XElement type:

<courses>
<course Title “CS50” Location =

/>

<course Title = “CS121” Location =

“Maxwell Dworkin” />

</courses>

* Here course is an element, Title and Location are
attributes. We can store them using the XElement
type; moreover we can navigate attributes storing

them using type XAttribute.

XML Examples

<students>
<student>
<name>Barney</name>
<class>2013</class>
<house>Currier</house>
</student>

</students>

<!--Here we just have a simple key-value
palr arrangement and no attributes (value
of name=Barney for 1nstance)-->

Setting XML elements

XElement xmlDocument =
new XElement (“students”,
new XElement (“student”,
new XElement (“name”),
new XElement (“class”),
)

new XElement (“house”
)
) ;
Now we have to set the values of the elements we just created:
XElement student=xmlDocument.Element (“student”);
student.SetElementValue (Yname”, “Mike”);
//you can see that an XElement stores a
//key-value pair - great for storing in a dict

Querying XML

 You need to first set the root element of the
XML:

Root = XElement.Load(“C:\Foo\bar.xml”);
e To access all elements under the root node:

Root.Elements()

* To pick the value of the first element:
Root.Elements().First().FirstAttribute.Value

Querying XML

 LINQ query is very similar to the SQL query
you’re familiar with:

FROM element in Root.Elements()
SELECT element
WHERE (...)
Notice that the FROM acts like a foreach

VS 2010 and XMLs in Projects

* |tis not sufficient to add the XML file to your
project solution

* You must also set in the XML file’s Properties
tab the “Copy to Output Directory” to “Copy
Always”

* This does not apply if your XML is from a URL

(then you don’t include a copy of it, you just
pass the URL path to the Load method).

TOC

Intro to C#

Hello World
Object-Oriented concepts
Collections

Control Flow

File I/O

Strings and REGEX

XML and LINQ Queries
Exception Handling

10. Debugging

1.
2.
3.
4.
5.
6.
7.
8.
9.

Exceptions (1)

* Exceptions serve as a means to report failures,
classify, and handle them

* Exceptions encapsulate all the information
about an error in a single class - to use
exceptions add a using statement for

using System.Exception;

* All exceptions derive from the
System.Exception class

Exceptions (2)

* The System.Exception class provides several
useful properties for debugging:

— Message

— StackTrace

— HelpLink (optional URL)
— Data (this is a dictionary)

— InnerException (if an exception is wrapped into a
different type of exception)

* How to “throw” an exception:
throw new System.Exception();

Exceptions (3)

e Standard exception types:
— ArgumentException
— ArgumentNullException
— DivideByZeroException
— NullReferenceException
— InvalidOperationException
— IndexOutOfRangeException
— OutOfMemoryException
— StackOverFlowException
— SystemException

Exceptions (4) — Handling Logic

* Try-Catch block: you execute code in the Try block
which may throw an exception of a specific type
which you then handle in the catch block:

try
{

int foo = 3/0;
}

catch (DivideByZeroException e)

{

Console.Writeline (“Why did you
divide by
zero?");

Exceptions (5) — Handling Logic

* Try-Catch block: you may have multiple catch
blocks for different types of exceptions such that

depending on the exception you execute a
different block of code.

* Example:
catch (SystemException el)
{ ..}
catch (ArgumentException e2)
{..}
catch (InvalidOperationException e3)

{...}

Exceptions (6) — Handling Logic

e Catch blocks can swallow errors — if you just
log an error message in your catch block and
do not handle the root cause of the error, then
you will fall into the bad design practice called
“swallowing an exception”.

If your application throws an exception that is
unhandled by a catch block will result in an
application crash.

Exceptions (7) — Handling Logic

* Try-Finally — the finally block of code executes
regardless of whether or not an exception was
thrown in the try block; the finally block

executes immediately after the try

* Try-Catch-Finally - may have multip
olocks, as before, but always a sing
olock.

DEMO

nlock

e catch

e finally

More Advanced

* |F you enter a situation in which it is unsafe to
continue (security risks for example, memory
corruption, etc.), instead of using an exception
use System.Environment.FailFast.

* FailFast immediately terminates the
application

* Such terminations are shown in the event log
for the application (in the Windows event log)

Intro to C#

Basic Syntax

Hello World
Object-Oriented concepts
Data structures

Control Flow

File I/O

REGEX

Exception Handling

10. Debugging [DEMO]

1.
2.
3.
4.
5.
6.
7.
8.
9.

More references

* Always good to use: F12 allows you to travel to
the definition of a type that belongs to a
referenced library

