This is CS50
Harvard University Fall 2012

Problem Set 5: Forensics

due by noon on Thu 10/18

Per the directions at this document’s end, submitting this problem set involves submitting source code
via submit50 as well as filling out a Web-based form, which may take a few minutes, so best not to
wait until the very last minute, lest you spend a late day unnecessarily.

Goals.

. Better acquaint you with file 1/0.

. Get you more comfortable with data structures, hexadecimal, and pointers.
o Introduce you to computer scientists across campus.

. Help Mr. Boddy.

Recommended Reading.!

i http://www.cprogramming.com/tutorial/cfileio.html
. Chapters 18, 24, 25, 27, and 28 of Absolute Beginner’s Guide to C
. Chapters 9, 11, 14, and 16 of Programming in C

d http://en.wikipedia.org/wiki/BMP file format

o http://en.wikipedia.org/wiki/Hexadecimal

o http://en.wikipedia.org/wiki/Jpg

diff pset4.pdf hacker4.pdf.

. Hacker Edition challenges you to implement Hacker Typer.
. Hacker Edition challenges you to reduce (and enlarge) BMPs.

'The Wikipedia articles are a bit dense; feel free to skim or skip!

0<21

This is CS50.
Harvard University Fall 2012

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed in writing by the course’s instructor. Collaboration in the completion
of problem sets is not permitted unless otherwise stated by some problem set’s specification.

Viewing or copying another individual’s work (even if left by a printer, stored in an executable directory,
or posted online) or lifting material from a book, website, or other source—even in part—and
presenting it as your own constitutes academic dishonesty, as does showing or giving your work, even in
part, to another student or soliciting the work of another individual. Similarly is dual submission
academic dishonesty: you may not submit the same or similar work to this course that you have
submitted or will submit to another. Nor may you provide or make available solutions to problem sets
to individuals who take or may take this course in the future. Moreover, submission of any work that
you intend to use outside of the course (e.g., for a job) must be approved by the course’s instructor or
preceptor.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the course’s instructor or preceptor.

You may turn to the Web for instruction beyond the course’s lectures and sections, for references, and
for solutions to technical difficulties, but not for outright solutions to problems on problem sets or your
own final project. However, failure to cite (as with comments) the origin of any code or technique that
you do discover outside of the course’s lectures and sections (even while respecting these constraints)
and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly. If the course refers some matter to the
Administrative Board and the outcome for some student is Admonish, Probation, Requirement to
Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local sanctions on
top of that outcome for that student that may include, but not be limited to, a failing grade for work
submitted or for the course itself.

Fine Print.
Your work on this problem set will be evaluated along four axes primarily.

Scope. To what extent does your code implement the features required by our specification?
Correctness. To what extent is your code consistent with our specifications and free of bugs?

Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

All students, whether taking the course Pass/Fail or for a letter grade, must ordinarily submit this and all
other problem sets to be eligible for a passing grade (i.e., Pass or A to D-) unless granted an exception in
writing by the course’s instructor or preceptor. No more than one late day may be spent on this, or any
other, problem set.

1<21

This is CS50.
Harvard University Fall 2012

A Section of Questions.

You're welcome to dive into these questions on your own, but know that they'll also be explored in
section! Instead of using CS50 Run or CS50 Spaces for these questions, you'll need to use the CS50
Appliance.

O

Head to

https://www.cs50.net/shorts/

and watch the short on Redirecting & Pipes. Be prepared to answer the following questions!

[0 To which "stream" do functions like print £ write by default?

[J What's the difference between >and >>?

[0 What pipeline could you use to find the number of unique names in a file called names.txt?

You may also want to re-watch the short on GDB!

This section of questions comes with some distribution code that you'll need to download before
getting started. Go ahead and execute

cd ~/Dropbox

in order to navigate to your ~/Dropbox directory. Then execute

wget http://cdn.cs50.net/2012/fall/sections/5/section5.zip

in order to download a ZIP (i.e., compressed version) of this section's distro. If you then execute

1s

you should see that you now have a file called section5.zip in your ~/Dropbox directory.
Unzip it by executing the below.

unzip sectionb5.zip
If you again execute

1ls

you should see that you now also have a section5 directory. You're now welcome to delete the
ZIP file with the below.

rm -f section5.zip

Now dive into that section5 directory by executing the below.

cd sectionb5

2<21

This is CS50.
Harvard University Fall 2012

Now execute
1s
and you should see that the directory contains the below.

buggyl buggy2 buggy3 buggy4 cat.c
buggyl.c Dbuggy2.c buggy3.c Dbuggyd.c cp.c

Whereas most of those are source files, buggyl, buggy2, buggy3, and buggy4 are binary files
that we've compiled for you. Indeed, if you try opening the files with gedit, you'll see a bunch of
binary gobbledygook.

[By now, you should know what gdb is, even though you might not fully appreciate it or
understand it. Time to fix!

As those programs' filenames suggest, they're a bit buggy, so your mission is to figure out why
using gdb! Go ahead and execute the below.

./buggyl

What happens? How about buggy2, buggy3, and buggy4?® Hm, not so good. Let's try to debug
buggyl. Go ahead and execute the below.

gdb ./buggyl

Next, set a breakpoint at the start of main by executing

break main

at gdb's prompt. And then execute

run

at gdb's prompt to get buggyl running. From there, see if you can figure out why buggy1 is so
buggy. Odds are you'll find the following commands helpful: r(un), n(ext), p(rint), g(uit),
h(elp), bt (backtrace), b(reak), u(p), d(own), and 1(ist).

Once you've figured out the source of buggyl's woes, move on to buggy2, buggy3, and buggy4!

Consider these buggy programs an opportunity to practice with gdb. No need to fix any bugs; the
goal is simply to identify them. You won't be asked to submit anything for these programs.

] Ready to wow your friends? Impress your enemies? Get ready... and check out the below.

http://hackertyper.net

? Recall that you can force a program to quit with ctrl-c.

3<21

This is CS50.
Harvard University Fall 2012

Your task is to implement Hacker Typer in C. When you're finished, you should have a binary
executable named hacker typer that takes in a single argument, the file to "hacker-type."
Running the executable should first clear the screen (recall how we did that in Problem Set 3!) and
then print out one character from the passed-in file each time the user presses a key.

Check out the stdio library to figure out which function(s) you might want to use. Keep in mind
that many of the functions that return characters actually return values of type int and not of
type char.

You'll also need to check out the termios library in order to stifle the character "echoes" that you
normally get when you type in the terminal, since if your friends see those, they'll know that

you're not actually typing out code! Additionally, the termios library will help you ensure that
the stdin stream "flushes" after each key press.

Use the man pages and Google to figure out how best to manage struct termios. You'll need
to use the tcgetattr and tcsetattr functions and mess with the structure's ¢ 1flag and
c_cc fields to get the job done. And remember to save a copy of your "normal" terminal settings
to restore before your program exits!

Finally, if you really want a challenge, know that real h4ck3rs will code this using

cat - > hacker typer.c

)

Consider this problem an opportunity to practice; you won’t be asked to submit this program.
Now that you're a master of reading files, let's add some writing into the mix. By now, you've
probably had to copy a file or two using the cp command. It turns out that it's not that much

more difficult to write now that you've implemented cat.

Go ahead and complete the implementation of cp.c, per the usage instructions therein, where
source is the name of the file to be copied, and destination is the filename (or path) for the
copy.

As with cat, you'll probably find fgetc (or fread) quite handy for reading! For writing, however,
you'll now want to use fputc instead of putc, though fwrite will still work if using fread.

Thoughts on how best to test your implementation?
Consider this problem an opportunity to practice; you won’t be asked to submit this program.

No need to worry about cat.c!

4<21

This is CS50
Harvard University Fall 2012

Getting Started.

|

O

Welcome back!

Start up your appliance and, upon reaching John Harvard’s desktop, open a terminal window
(remember how?) and execute

update50
to ensure that your appliance is up-to-date!

Like Problem Set 3, this problem set comes with some distribution code that you'll need to
download before getting started. Go ahead and execute

cd ~/Dropbox
in order to navigate to your ~/Dropbox directory. Then execute

wget http://cdn.cs50.net/2012/fall/psets/4/hackerd.zip

in order to download a ZIP (i.e., compressed version) of this problem set's distro. If you then
execute

1s

you should see that you now have a file called hacker4.zip in your ~/Dropbox directory. Unzip
it by executing the below.

unzip hacker4.zip
If you again execute

1s

you should see that you now also have a hacker4 directory. You're now welcome to delete the
ZIP file with the below.

rm —-f hacker4d4.zip

Now dive into that hacker4 directory by executing the below.

cd hackerd4

5<21

This is CS50.
Harvard University Fall 2012

Now execute

1s

and you should see that the directory contains the below.

bmp/ jpg/ dquestions.txt
How fun! Two subdirectories and a file. Who knows what could be inside! Let's get started.

[If you ever saw Windows XP’s default wallpaper (think rolling hills and blue skies), then you’ve
seen a BMP. If you've ever looked at a webpage, you’ve probably seen a GIF. If you've ever
looked at a digital photo, you’ve probably seen a JPEG. If you've ever taken a screenshot on a
Mac, you’ve probably seen a PNG. Read up a bit on the BMP, GIF, JPEG, and PNG file formats.?
Then, open up questions.txt in ~/Dropbox/hacker4, as with gedit, and tell us the below.

How many different colors does each format support?

Which of these formats supports animation?

What's the difference between lossy and lossless compression?
Which of these formats is lossy-compressed?

wN e o

] Curl up with the article from MIT below.

http://cdn.cs50.net/2012/fall/psets/4/garfinkel.pdf

Though somewhat technical, you should find the article’s language quite accessible. Once you’ve
read the article, answer each of the following questions in a sentence or more in
~/Dropbox/hacker4/questions. txt.

4. What happens, technically speaking, when a file is deleted on a FAT file system?
5. What can someone like you do to ensure (with high probability) that files you delete cannot
be recovered?

® For this question, you’re welcome to consult How Computers Work, Google, Wikipedia, a friend, or anyone else, so long as
your words are ultimately your own!

6<21

This is CS50.
Harvard University Fall 2012

Whodunit.

O Welcome to Tudor Mansion. Your host, Mr. John Boddy, has met an untimely end—he’s the
victim of foul play. To win this game, you must determine whodunit.

Unfortunately for you (though even more unfortunately for Mr. Boddy), the only evidence you
have is a 24-bit BMP file called clue.bmp, pictured below, that Mr. Boddy whipped up on his
computer in his final moments.* Hidden among this file’s red “noise” is a picture of whodunit.

o A b

You long ago threw away that piece of red plastic from childhood that would solve this mystery for
you, and so you must attack it as a computer scientist instead.

But, first, some background.

* Realize that this BMP is in color even though you might have printed this document in black and white.

7<21

O

This is CS50.
Harvard University Fall 2012

Perhaps the simplest way to represent an image is with a grid of pixels (i.e., dots), each of which
can be of a different color. For black-and-white images, we thus need 1 bit per pixel, as 0 could
represent black and 1 could represent white, as in the below.”

11000011
10111101
01011010
01111110
01011010
01100110

10111101
11000011

In this sense, then, is an image just a bitmap (i.e., a map of bits). For more colorful images, you
simply need more bits per pixel. A file format (like GIF) that supports “8-bit color” uses 8 bits per
pixel. A file format (like BMP, JPEG, or PNG) that supports “24-bit color” uses 24 bits per pixel.®

A 24-bit BMP like Mr. Boddy’s uses 8 bits to signify the amount of red in a pixel’s color,
8 bits to signify the amount of green in a pixel’s color, and 8 bits to signify the amount of blue in a
pixel’s color. If you’ve ever heard of RGB color, well, there you have it: red, green, blue.

If the R, G, and B values of some pixel in a BMP are, say, 0xff, 0x00, and 0x00 in hexadecimal, that
pixel is purely red, as Oxff (otherwise known as 255 in decimal) implies “a lot of red,” while 0x00
and 0x00 imply “no green” and “no blue,” respectively. Given how red Mr. Boddy’s BMP is, it
clearly has a lot of pixels with those RGB values. But it also has a few with other values.

Incidentally, HTML and CSS (languages in which webpages can be written) model colors in this
same way. If curious, see the URL below for more details.

http://en.wikipedia.org/wiki/Web colors

Now let’s get more technical. Recall that a file is just a sequence of bits, arranged in some fashion.
A 24-bit BMP file, then, is essentially just a sequence of bits, (almost) every 24 of which happen to
represent some pixel’s color. But a BMP file also contains some “metadata,” information like an
image’s height and width. That metadata is stored at the beginning of the file in the form of two
data structures generally referred to as “headers” (not to be confused with C’s header files).” The
first of these headers, called BITMAPFILEHEADER, is 14 bytes long. (Recall that 1 byte equals
8 bits.) The second of these headers, called BITMAPINFOHEADER, is 40 bytes long. Immediately
following these headers is the actual bitmap: an array of bytes, triples of which represent a pixel’s
color.® However, BMP stores these triples backwards (i.e., as BGR), with 8 bits for blue, followed

> Image adapted from http://www.brackeen.com/vga/bitmaps.html.
GBMPacanyamponsly478316324nand32bncobn

7 Incidentally, these headers have evolved over time. This problem set only expects that you support version 4.0 (the latest) of
Microsoft’s BMP format, which debuted with Windows 95.

& In 1-, 4-, and 16-bit BMPs (but not 24- or 32-), there’s an additional header right after BITMAPINFOHEADER called
RGBQUAD, an array that defines “intensity values” for each of the colors in a device’s palette.

8<21

This is CS50.
Harvard University Fall 2012

by 8 bits for green, followed by 8 bits for red.’ In other words, were we to convert the 1-bit smiley
above to a 24-bit smiley, substituting red for black, a 24-bit BMP would store this bitmap as
follows, where 0000ff signifies red and ffffff signifies white; we’ve highlighted in red all
instances of 0000 ff.

ffffff ff£ffff 0000ff O0000ff O0000ff O0000ff ffffff ffffff
ffffff O0000ff ffffff ffffff f£fffff ffffff O0000ff ffffff
0000ff ffffff O0000ff ffffff f£fffff O0000ff £ffffff O000ff
0000ff ffffff ffffff ffffff ffffff ffffff £fffff O000ff
0000ff ffffff O0000ff ffffff f£fffff O0000ff £ffffff O000ff
0000ff ffffff ffffff O0000ff O0000ff ffffff ffffff O000ff
ffffff O0000ff ffffff ffffff f£fffff ffffff O0000ff Effffff
ffffff ff£ffff O0000ff O0O000ff O0O00O0ff O0000ff ffffff ffffff

Because we’ve presented these bits from left to right, top to bottom, in 8 columns, you can
actually see the red smiley if you take a step back.

To be clear, recall that a hexadecimal digit represents 4 bits. Accordingly, ffff£f in hexadecimal
actually signifies 111111111111111111111111 in binary.

Okay, stop! Don’t proceed further until you’re sure you understand why 0000 £ f represents a red
pixel in a 24-bit BMP file.

[0 Okay, let’s transition from theory to practice. Double-click Home on John Harvard's desktop and
you should find yourself in John Harvard's home directory. Double-click hackerd, double-click
bmp, and then double-click smiley.bmp therein. You should see a tiny smiley face that's only 8
pixels by 8 pixels. Select View > Zoom > Zoom Fit, and you should see a larger, albeit blurrier,
version. (So much for "enhance," huh?) Actually, this particular image shouldn't really be blurry,
even when enlarged. The program that launched when you double-clicked smiley.bmp (called
Ristretto Photo Viewer) is simply trying to be helpful (CSI-style) by "dithering" the image (i.e., by
smoothing out its edges). Below's what the smiley looks like if you zoom in without dithering. At
this zoom level, you can really see the image's pixels (as big squares).

® Some BMPs also store the entire bitmap backwards, with an image’s top row at the end of the BMP file. But we’ve stored this
problem set’s BMPs as described herein, with each bitmap’s top row first and bottom row last.

9<21

This is CS50.
Harvard University Fall 2012

Okay, go ahead and return your attention to a terminal window, and navigate your way to
~/Dropbox/hacker4/bmp. (Remember how?) Let's look at the underlying bytes that compose
smiley.bmp using xxd, a command-line “hex editor." Execute:

xxd -c 24 -g 3 -s 54 smiley.bmp

You should see the below; we’ve again highlighted in red all instances of 0000 £ £.

0000036: ffffff ffffff 0000ff 0000ff 0000ff O0000ff ffffff FEFFFF
000004e: ffffff 0000ff ffffff ffffff fEFFfFff fEEFFfFf 0000ff £EEFFF . it
0000066: O0000ff ffffff 0000ff ffffff fEfffff 0000ff £f£ffff 0000ff
000007e: O000ff ffffff fEfffff ffEffff fEFFFf £EEFFF £EFFFF 0000FEf oot
0000096: 0000ff ffffff 0000ff ffffff fEfffff 0000ff £f£ffff 0000ff
00000ae: 0000ff ffffff ffffff 0000ff 0000ff fEfffff £LffFfFfFf 0000ff ... v,
00000c6: ffffff 0000ff ffffff ffffff fEFFfFff fEEFFFf 0000ff £EFFFF .o it
00000de: ffffff ffffff 0000ff 0000ff 0000ff O0000ff ffffff FEFFFF,

In the leftmost column above are addresses within the file or, equivalently, offsets from the file’s
first byte, all of them given in hex. Note that 00000036 in hexadecimal is 54 in decimal. You're
thus looking at byte 54 onward of smiley.gif. Recall that a 24-bit BMP’s first 14 + 40 = 54 bytes
are filled with metadata. If you really want to see that metadata in addition to the bitmap,
execute the command below.

xxd -c 24 -g 3 smiley.bmp

If smiley.bmp actually contained ASCIl characters, you'd see them in xxd’s rightmost column
instead of all of those dots.

So, smiley.bmp is 8 pixels wide by 8 pixels tall, and it's a 24-bit BMP (each of whose
pixels is represented with 24 + 8 = 3 bytes). Each row (aka “scanline”) thus takes up
(8 pixels) x (3 bytes per pixel) = 24 bytes, which happens to be a multiple of 4. It turns out that
BMPs are stored a bit differently if the number of bytes in a scanline is not, in fact, a multiple of 4.
In small.bmp, for instance, is another 24-bit BMP, a green box that’s 3 pixels wide by 3 pixels
wide. If you view it with Ristretto Photo Viewer (as by double-clicking it), you’ll see that it
resembles the below, albeit much smaller. (Indeed, you might need to zoom in again to see it.)

10<21

This is CS50
Harvard University Fall 2012

Each scanline in small.bmp thus takes up (3 pixels) x (3 bytes per pixel) = 9 bytes, which is not a
multiple of 4. And so the scanline is “padded” with as many zeroes as it takes to extend the
scanline’s length to a multiple of 4. In other words, between 0 and 3 bytes of padding are needed
for each scanline in a 24-bit BMP. (Understand why?) In the case of small.bmp, 3 bytes’ worth
of zeroes are needed, since (3 pixels) x (3 bytes per pixel) + (3 bytes of padding) = 12 bytes, which
is indeed a multiple of 4.

To “see” this padding, go ahead and run the below.
xxd -c¢ 12 -g 3 -s 54 small.bmp
Note that we’re using a different value for -c than we did for smiley.bmp so that xxd outputs

only 4 columns this time (3 for the green box and 1 for the padding). You should see output like
the below; we’ve highlighted in green all instances of 00££00.

0000036: 000000 ...,
0000042: fEEfff 000000 ...
000004e: 000000 ...,

For contrast, let’s use xxd on large.bmp, which looks identical to small.bmp but, at 12 pixels
by 12 pixels, is four times as large. Go ahead and execute the below; you may need to widen your
window to avoid wrapping.

xxd -c¢ 36 -g 3 -s 54 large.bmp

You should see output like the below; we’ve again highlighted in green all instances of 00££00

0000036: 00f£00 00££f00 00££f00 O0££00 O0f£@0 OOff00 OOEEOOR00££00 00££00 00££00 00F£00 O0FFOD wuvvvvinnnneeerennnnneeeeennnnnaeens
000005a: 00f£f00 00££f00 00£f£f00 O0££00 O0LE00 00££00 00EEL00 OOLL00 00££00 00££00 00F£00 O0FFOD wuvvvvinnnneeerennnnneeceennnnnseens
000007e: 00f£00 00££f00 00££f00 O0££f00 QOEELO0 QO££00 00£ffO0 00E££00 O00££00 00££00 00F£00 O0FFOD wuvvviiunnneeerennnnneeeeennnnnseens
00000a2: 00f£00 00££f00 00££f00 O00££00“Q0EL£00L00FT00 HOEFO0 O0EFO0 O0E££00 00££00 00F£00 O0FFOD wuvvvvnnnneeerennnoneeceennnnnseens

00000c6: fEEEFF £ffFfFfFf FEFEEE FEFFEE 00E£00 O00L£00 00££00 00FL00 v v iinii it iennnneeeennnnnneeennnns
00000ea: fEfFFf FEEFFF FEFEFE FfEFFFF 00L£00 00££00 00££00 00EE00 tu vt utinn it i iiianeeeennnnn
000010e: fEEffff £EFEFF FEEFFE F£EFFEF O0L£00 00££00 00££00 00EE00 tu vt utnnin ittt et iiianeeeennnnn
0000132: fEEEFff EEFFEF FEEEFE F£EFFFEF 00L£00 00££00 00££00 00FEL£00 tu vt utnie ittt i iitaneeeennnnn

0000156: 00f£f00 00££f00 00££006, 00EE00 VOEECLO 00L£00 00££00 O00E£00 O00££00 00££00 00F£00 O0FFOD wuvvvvinnnneeerennnnneeeeennnnnseens
000017a: O00f£00 00££f00 OOE£00 WOEE00 O00E££00 00£f00 00££f00 O0E£00 O0F££00 00££00 O00F£00 OO0FFOD wuvvvvinunneeerennnnneeeeennnnnseens
000019e: 00f£f00 00££f00 00f£00 OOE£00 OOELE£00 00££f00 00££f00 O0E£00 O0F££00 00££00 O00F£00 O00FFOD wuvvvviuunneeerennnnneeeeennnnnseens
00001c2: 00f£f00 00ff0Qm@0ff00 OOEEO0 O00f£00 00££f00 00££f00 O0E£00 O0££00 00££00 O00££00 OO0FFOD wuvvvviunneeerennnnneeceennnnnseens

Worthy of note is that this BMP lacks padding! After all, (12 pixels) x (3 bytes per pixel) = 36 bytes
is indeed a multiple of 4.

Knowing all this has got to be useful!
Okay, xxd only showed you the bytes in these BMPs. How do we actually get at them
programmatically? Well, in copy.c is a program whose sole purpose in life is to create a copy of a

BMP, piece by piece. Of course, you could just use cp for that. But cp isn’t going to help Mr.
Boddy. Let’s hope that copy.c does!

11<21

This is CS50.
Harvard University Fall 2012

Go ahead and compile copy.c into a program called copy. (Remember how?) Then execute a
command like the below.

./copy smiley.bmp copy.bmp

If you then execute 1s (with the appropriate switch), you should see that smiley.bmp and
copy.bmp are indeed the same size. Let’s double-check that they’re actually the same! Execute
the below.

diff smiley.bmp copy.bmp

If that command tells you nothing, the files are indeed identical.’® Feel free to open both files in
Ristretto Photo Viewer (as by double-clicking each) to confirm as much visually. But di ff does a
byte-by-byte comparison, so its eye is probably sharper than yours!

So how now did that copy get made? It turns out that copy.c relies on bmp.h. Let’s take a look.
Open up bmp.h (as with gedit), and you’ll see actual definitions of those headers we’ve
mentioned, adapted from Microsoft’s own implementations thereof. In addition, that file defines
BYTE, DWORD, LONG, and WORD, data types normally found in the world of Win32 (i.e., Windows)
programming. Notice how they’re just aliases for primitives with which you are (hopefully)
already familiar. It appears that BITMAPFILEHEADER and BITMAPINFOHEADER make use of
these types. This file also defines a struct called RGBTRIPLE that, quite simply, “encapsulates”
three bytes: one blue, one green, and one red (the order, recall, in which we expect to find RGB
triples actually on disk).

Why are these structs useful? Well, recall that a file is just a sequence of bytes (or, ultimately,
bits) on disk. But those bytes are generally ordered in such a way that the first few represent
something, the next few represent something else, and so on. “File formats” exist because the
world has standardized what bytes mean what. Now, we could just read a file from disk into RAM
as one big array of bytes. And we could just remember that the byte at location [i] represents
one thing, while the byte at location [j] represents another. But why not give some of those
bytes names so that we can retrieve them from memory more easily? That’s precisely what the
structs in bmp.h allow us to do. Rather than think of some file as one long sequence of bytes,
we can instead think of it as a sequence of structs.

1% Note that some programs (e.g., Photoshop) include trailing zeroes at the ends of some BMPs. Our version of copy throws
those away, so don’t be too worried if you try to copy a BMP (that you’ve downloaded or made) only to find that the copy is
actually a few bytes smaller than the original.

12<21

This is CS50.
Harvard University Fall 2012

Recall that smiley.bmp is 8 by 8 pixels, and so it should take up 14 + 40 + 8 - 8 - 3 = 246 bytes on
disk. (Confirm as much if you’d like using 1s.) Here’s what it thus looks like on disk according to
Microsoft:

offset type | name

0 WORD | bfType M

2 DWORD | bfSize

6 WORD bfReservedl > BITMAPFILEHEADER
8 WORD bfReserved?2

10 DWORD | bfOffBits _J

14 DWORD | biSize A

18 LONG biWwidth

22 LONG biHeight

26 WORD biPlanes

28 WORD biBitCount

30 DWORD | biCompression >—BITMAPINFOHEADER
34 DWORD [biSizeImage

38 LONG biXPelsPerMeter

42 LONG biYPelsPerMeter

46 DWORD | biClrUsed

50 DWORD | biClrImportant v

54 BYTE rgbtBlue

55 BYTE rgbtGreen :}» RGBTRIPLE
56 BYTE rgbtRed

57 BYTE rgbtBlue

58 BYTE rgbtGreen :}» RGBTRIPLE
59 BYTE rgbtRed

243 BYTE rgbtBlue

244 BYTE rgbtGreen } RGBTRIPLE
245 BYTE rgbtRed

As this figure suggests, order does matter when it comes to structs’ members. Byte 57 is
rgbtBlue (and not, say, rgbtRed), because rgbtBlue is defined first in RGBTRIPLE."

Now go ahead and pull up the URLs to which BITMAPFILEHEADER and BITMAPINFOHEADER are
attributed, per the comments in bmp.h. You’re about to start using MSDN (Microsoft Developer
Network)!

Rather than hold your hand further on a stroll through copy.c, we’re instead going to ask you
some questions and let you teach yourself how the code therein works. As always, man is your
friend, and so, now, is MSDN. If not sure on first glance how to answer some question, do some
quick research and figure it out! You might want to turn to the below resource as well.

http://www.cs50.net/resources/cppreference.com/stdio/

! Our use, incidentally, of the __attribute called packed ensures that gcc does not try to “word-align” members
(whereby the address of each member’s first byte is a multiple of 4), lest we end up with “gaps” in our structs that don’t
actually exist on disk.

13<21

This is CS50.
Harvard University Fall 2012

Allow us to suggest that you also run copy within gdb while answering these questions. Set a
breakpoint at main and walk through the program. Recall that you can tell gdb to start running
the program with a command like the below at gdb’s prompt.

run smiley.bmp copy.bmp

If you tell gdb to print the values of bf and bi (once read in from disk), you'll see output like the
below, which we daresay you’ll find quite useful.

{bfType = 19778, bfSize = 246, bfReservedl = 0, bfReserved2 = 0,
bfOffBits = 54}

{biSize = 40, biWidth = 8, biHeight = -8, biPlanes = 1, biBitCount = 24,
biCompression = 0, biSizeImage = 192, biXPelsPerMeter = 2834,
biYPelsPerMeter = 2834, biClrUsed = 0, biClrImportant = 0}

In ~/Dropbox/hacker4/questions.txt, answer each of the following questions in a sentence
or more.

6 What’s stdint.h?

7 What’s the point of using uint8 t,uint32 t, int32 t,anduintlé6 tina program?
8. How many bytes is a BYTE, a DWORD, a LONG, and a WORD, respectively?12

9. What (in ASCII, decimal, or hexadecimal) must the first two bytes of any BMP file be
10. What's the difference between bfSize and bisize?

11. What does it mean if biHeight is negative?

12. What field in BITMAPINFOHEADER specifies the BMP’s color depth (i.e., bits per pixel)?
13. Why might fopen return NULL in copy.c:37?

14. Why is the third argument to fread always 1 in our code?

15. What value does copy.c:70 assigh padding if bi.biWidth is 3?

16. What does fseek do?

17. Whatis SEEK_CUR?

?13

Okay, back to Mr. Boddy.
[0 Write a program called whodunit in a file called whodunit . c that reveals Mr. Boddy's drawing.

Ummm, what?

'2 Assume a 32-bit architecture like the CS50 Appliance.
13 Leading bytes used to identify file formats (with high probability) are generally called “magic numbers.”

14<21

This is CS50.
Harvard University Fall 2012

Well, think back to childhood when you held that piece of red plastic over similarly hidden
messages." Essentially, the plastic turned everything red but somehow revealed those messages.
Implement that same idea in whodunit. Like copy, your program should accept exactly two
command-line arguments. And if you execute a command like the below, stored in verdict.bmp
should be a BMP in which Mr. Boddy’s message is no longer covered with noise.

whodunit clue.bmp verdict.bmp

Allow us to suggest that you begin tackling this mystery by executing the command below.

cp copy.c whodunit.c

Wink wink. You may be amazed by how few lines of code you actually need to write in order to
help Mr. Boddy.

There’s nothing hidden in smiley.bmp, but feel free to test your program out on its pixels
nonetheless, if only because that BMP is small and you can thus compare it and your own
program’s output with xxd during development.”

Rest assured that more than one solution is possible. So long as Mr. Boddy's drawing is
identifiable (by your teaching fellow), no matter its color(s), Mr. Boddy will rest in peace.

0 In~/Dropbox/hackerd/questions.txt, answer the question below.
18. Whodunit?
[0 Well that was fun. Bit late for Mr. Boddy, though.

Let’s have you write more than, what, two lines of code? Implement now in resize.c a program
called resize that resizes 24-bit uncompressed BMPs by a factor of £. Your program should
accept exactly three command-line arguments, per the below usage, whereby the first (£) must be
a floating-point value in (0.0, 100.0), the second the name of the file to be resized, and the third
the name of the resized version to be written.

Usage: resize f infile outfile

With a program like this, we could have created large.bmp out of small.bmp by resizing the
latter by a factor of 4.0 (i.e., by multiplying both its width and it s height by 4.0), per the below.™®

./resize 4.0 small.bmp large.bmp

You’re welcome to get started by copying (yet again) copy.c and naming the copy resize.c.
But spend some time thinking about what it means to resize a BMP, particularly if £ is

14h‘youremembernosuchpieceofplastic,besttoaskafriendorTFabouthisorherchiIdhood
15Ormaybethereisamessagehiddeninsmiley.bmptoo.No,there’snot.
'® And yet we used Photoshop.

15<21

This is CS50.
Harvard University Fall 2012

in (0.0, 1.0).””*® How you handle floating-point imprecision and rounding is entirely up to you, as
is how you handle inevitable loss of detail. Decide which of the fields in BITMAPFILEHEADER and
BITMAPINFOHEADER you might need to modify. Consider whether or not you’ll need to add or
subtract padding to scanlines.

If you'd like to play with the staff's own implementation of resize in the appliance, you may
execute the below."

~csb0/hackerd/resize

O Best to run

submit50 ~/Dropbox/hacker4

from time to time in order to back up your code to CS50’s servers. (Your TF will grade your final
submission.)

cs1.?
[0 Alright, now let’s put all your new skills to the test.

In anticipation of this problem set, | spent the past several days snapping photos of people | know,
all of which were saved by my digital camera as JPEGs on a 1GB CompactFlash (CF) card.”
Unfortunately, I’'m not very good with computers, and | somehow deleted them all! Thankfully, in
the computer world, “deleted” tends not to mean “deleted” so much as “forgotten.” My
computer insists that the CF card is now blank, but I'm pretty sure it’s lying to me.

Write a program in ~/Dropbox/hacker4/jpg/ called recover that recovers these photos.
Ummm.

Well, here’s the thing. Even though JPEGs are more complicated than BMPs, JPEGs have
“signatures,” patterns of bytes that distinguish them from other file formats. In fact, most JPEGs
begin with one of two sequences of bytes. Specifically, the first four bytes of most JPEGs are
either

Oxff 0xd8 Oxff OxeOl

or

Oxff 0xd8 Oxff Oxel

7 You may assume that £ times the size of infile will not exceed 2% -1

18 Asfor £ = 1.0, the result should indeed be an outfile with dimensions identical to infile’s.

1% We've not made solutions available for this problem set’s other programs, lest they spoil the forensic fun.
ZOComputerScienceInvestigation

s possible | actually spent the past several days on Facebook instead.

16<21

This is CS50.
Harvard University Fall 2012

from first byte to fourth byte, left to right. Odds are, if you find one of these patterns of bytes on
a disk known to store photos (e.g., my CF card), they demark the start of a JPEG.?

Fortunately, digital cameras tend to store photographs contiguously on CF cards, whereby each
photo is stored immediately after the previously taken photo. Accordingly, the start of a JPEG
usually demarks the end of another. However, digital cameras generally initialize CF cards with a
FAT file system whose “block size” is 512 bytes (B). The implication is that these cameras only
write to those cards in units of 512 B. A photo that’s 1 MB (i.e., 1,048,576 B) thus takes up
1048576 + 512 = 2048 “blocks” on a CF card. But so does a photo that’s, say, one byte smaller
(i.e., 1,048,575 B)! The wasted space on disk is called “slack space.” Forensic investigators often
look at slack space for remnants of suspicious data.

The implication of all these details is that you, the investigator, can probably write a program that
iterates over a copy of my CF card, looking for JPEGs’ signatures. Each time you find a signature,
you can open a new file for writing and start filling that file with bytes from my CF card, closing
that file only once you encounter another signature. Moreover, rather than read my CF card’s
bytes one at a time, you can read 512 of them at a time into a buffer for efficiency’s sake. Thanks
to FAT, you can trust that JPEGs’ signatures will be “block-aligned.” That is, you need only look for
those signatures in a block’s first four bytes.

Realize, of course, that JPEGs can span contiguous blocks. Otherwise, no JPEG could be larger
than 512 B. But the last byte of a JPEG might not fall at the very end of a block. Recall the
possibility of slack space. But not to worry. Because this CF card was brand-new when | started
snapping photos, odds are it'd been “zeroed” (i.e., filled with 0s) by the manufacturer, in which
case any slack space will be filled with 0s. It’s okay if those trailing Os end up in the JPEGs you
recover; they should still be viewable.

Now, | only have one CF card, but there are a whole lot of you! And so I've gone ahead and
created a “forensic image” of the card, storing its contents, byte after byte, in a file called
card.raw. So that you don’t waste time iterating over millions of Os unnecessarily, I've only
imaged the first few megabytes of the CF card. But you should ultimately find that the image
contains 51 JPEGs. As usual, you can open the file programmatically with fopen, as in the
below.”

FILE* fp = fopen("card.raw", "xr");

Notice, incidentally, that ~/Dropbox/hacker4/jpg/ contains only recover.c, but it's devoid
of any code. (We leave it to you to decide how to implement and compile recover!) For
simplicity, you may hard-code the path to card.raw in your program; your program need not
accept any command-line arguments. When executed, though, your program should recover
every one of the JPEGs from card. raw, storing each as a separate file in your current working
directory. Your program should number the files it outputs by naming each ###.jpg, where ###
is three-digit decimal number from 000 on up. (Befriend sprintf.) You need not try to recover

22T be sure, you might encounter these patterns on some disk purely by chance, so data recovery isn’t an exact science.
2 |t’s fine to hard-code this path into your program rather than define it as some constant.

17<21

This is CS50.
Harvard University Fall 2012

the JPEGs’ original names. To check whether the JPEGs your program spit out are correct, simply
double-click and take a look! If each photo appears intact, your operation was likely a success!

Odds are, though, the JPEGs that the first draft of your code spits out won’t be correct. (If you
open them up and don’t see anything, they’re probably not correct!) Execute the command
below to delete all JPEGs in your current working directory.
rm *.Jjpg
If you’d rather not be prompted to confirm each deletion, execute the command below instead.
rm -f *.jpg
Just be careful with that - £ switch, as it “forces” deletion.

[0 Don’tforgettorun

submit50 ~/hacker4

from time to time in order to back up your code to CS50’s servers!

| Saw You Harvard.

] And now the real fun begins. You and your section are hereby challenged to find as many of the
computer scientists featured in these photos as possible. To prove that you found someone, take
a photo of yourself (or of someone in your section) posing with the computer scientist. Upload
your section’s photos (i.e., the photos you took, not the ones that you recovered) to an album
somewhere (e.g., Facebook, Flickr, Picasa Web Albums, etc.); just be sure your TF can access the
album.* Then have your TF email your album’s URL to heads@cs50 . net by noon on Wed 10/31!

The section that identifies and photographs the most computer scientists shall win a fabulous
prize. In the event of a tie, the section that submitted first shall be decreed the winner.

**You should probably nominate someone(s) in your section to take charge.

18<21

This is CS50
Harvard University Fall 2012

Sanity Checks.

Before you consider this problem set done, best to ask yourself these questions and then go back and
improve your code as needed! Do not consider the below an exhaustive list of expectations, though,
just some helpful reminders. The checkboxes that have come before these represent the exhaustive
list! To be clear, consider the questions below rhetorical. No need to answer them in writing for us,
since all of your answers should be “yes!”

O dooogdgogo

Did you fill questions. txt with answers to all questions?

Is the BMP that whodunit outputs legible?

Does resize accept three and only three command-line arguments?

Does resize ensure that f isin (1.0, 100)?

Does resize update bfSize, biHeight, biSizeImage, and biWidth correctly?

Does resize add or remove padding as needed?

Does recover output 51 JPEGs? Are all 51 viewable?

Does recover name the JPEGs ###.jpg, where ### is a three-digit number from 000 through
0507

Are all of your files where they should be in ~/Dropbox/hacker4/?

As always, if you can’t answer “yes” to one or more of the above because you’re having some trouble,
do drop by office hours or turnto ¢cs50.net/discuss!

How to Submit.

In order to submit this problem set, you must first execute a command in the appliance and then submit
a (brief) form online.

O

Open a terminal window (as via Menu > Programming > Terminal or within gedit) then execute

update50

to ensure you have the latest release of the appliance. Then execute:

cd ~/Dropbox/hackerd

And then execute:

1s

At a minimum, you should see bmp/, jpg/, and questions.txt. If not, odds are you skipped
some step(s) earlier! If you do see those files, you are ready to submit your source code to us.

Execute

submit50 ~/Dropbox/hacker4

19<21

This is CS50.
Harvard University Fall 2012

and follow the on-screen instructions. That command will essentially upload your entire
~/Dropbox/hacker4 directory to CS50’s servers, where your TF will be able to access it. The
command will inform you whether your submission was successful or not. And you may inspect
your submission at cs50.net/submit.

You may re-submit as many times as you’d like; we’ll grade your most recent submission. But take
care not to submit after the problem set’s deadline, lest you spend a late day unnecessarily or risk

rejection entirely.

If you run into any trouble at all, let us know via cs50.net/discuss and we'll try to assist! Just
take care to seek help well before the problem set’s deadline, as we can’t always reply right away!

Head to the URL below where a short form awaits:
https://www.cs50.net/psets/4/

Once you have submitted that form (as well as your source code), you are done!

This was Problem Set 4.

20<21

