This is CS50.
Harvard University Fall 2012

Problem Set 5: Mispellings

due by noon on Thu 10/25

Per the directions at this document’s end, submitting this problem set involves submitting source code
via submit50 as well as filling out a Web-based form, which may take a few minutes, so best not to
wait until the very last minute, lest you spend a late day unnecessarily.

Goals.
. Allow you to design and implement your own data structure.
. Optimize your code’s (real-world) running time.

. Challenge the Big Board.

Recommended Reading.

. Sections 18 — 20, 27 — 30, 33, 36, and 37 of http://www.howstuffworks.com/c.htm.
. Chapter 17 of Programming in C.

diff pset5.pdf hacker5.pdf.

. Hacker Edition challenges you with a different Section of Questions.

0<16

This is CS50.
Harvard University Fall 2012

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed in writing by the course’s instructor. Collaboration in the completion
of problem sets is not permitted unless otherwise stated by some problem set’s specification.

Viewing or copying another individual’s work (even if left by a printer, stored in an executable directory,
or posted online) or lifting material from a book, website, or other source—even in part—and
presenting it as your own constitutes academic dishonesty, as does showing or giving your work, even in
part, to another student or soliciting the work of another individual. Similarly is dual submission
academic dishonesty: you may not submit the same or similar work to this course that you have
submitted or will submit to another. Nor may you provide or make available solutions to problem sets
to individuals who take or may take this course in the future. Moreover, submission of any work that
you intend to use outside of the course (e.g., for a job) must be approved by the course’s instructor or
preceptor.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the course’s instructor or preceptor.

You may turn to the Web for instruction beyond the course’s lectures and sections, for references, and
for solutions to technical difficulties, but not for outright solutions to problems on problem sets or your
own final project. However, failure to cite (as with comments) the origin of any code or technique that
you do discover outside of the course’s lectures and sections (even while respecting these constraints)
and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly. If the course refers some matter to the
Administrative Board and the outcome for some student is Admonish, Probation, Requirement to
Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local sanctions on
top of that outcome for that student that may include, but not be limited to, a failing grade for work
submitted or for the course itself.

Fine Print.
Your work on this problem set will be evaluated along four axes primarily.

Scope. To what extent does your code implement the features required by our specification?
Correctness. To what extent is your code consistent with our specifications and free of bugs?

Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

All students, whether taking the course Pass/Fail or for a letter grade, must ordinarily submit this and all
other problem sets to be eligible for a passing grade (i.e., Pass or A to D—) unless granted an exception in
writing by the course’s instructor or preceptor. No more than one late day may be spent on this, or any
other, problem set.

1<16

This is CS50.
Harvard University Fall 2012

A Section of Questions.

You're welcome to dive into these questions on your own, but know that they'll also be explored in
section! Instead of using CS50 Run or CS50 Spaces for these questions, you'll need to use the CS50
Appliance.

O

This section of questions comes with some distribution code that you'll need to download before
getting started. Go ahead and execute

cd ~/Dropbox

in order to navigate to your ~/Dropbox directory. Then execute

wget http://cdn.cs50.net/2012/fall/sections/6/hacker6.zip

in order to download a ZIP (i.e., compressed version) of this section's distro. If you then execute

1s

you should see that you now have a file called hacker6.zip in your ~/Dropbox directory. Unzip
it by executing the below.

unzip hacker6.zip
If you again execute

1s

you should see that you now also have a sectioné6 directory. You're now welcome to delete the
ZIP file with the below.

rm -f hacker6.zip

Now dive into that hacker6 directory by executing the below.

cd hackeré6

Now execute

1s

and you should see that the directory contains the below.

queue.c sll.c stack.c

A "stack" is one of the basic, fundamental data structures of computer science. We use stacks

when we're modeling collections of elements that follow a "last-in, first-out" (LIFO) pattern of
insertion and retrieval. Think about the piles of trays in the dining halls: when the dining staff put

2<16

This is CS50.
Harvard University Fall 2012

trays out before meals, they pile them from the bottom to the top, and then you take the top-
most tray when you arrive. The last tray that the staff put on the pile is the first one taken off of
the pile.

But wait, isn't the "stack" a segment of memory? Yep, that's right too! It's no coincidence that
the data structure and the memory segment share the same name, since the stack memory
segment behaves just like the stack data structure, whereby functions' "stack frames" are the
elements being stored in the stack memory segment. When a function is called, a new stack
frame is placed on the "top" of the stack memory segment, and when that function returns, its
stack frame is removed from the top of the segment.

Unlike arrays, which allow you to access any element in the array whenever you like, with stacks
you only ever access the element at the top of the stack. A stack's two primary operations are
called push and pop: push places a new element on the top of the stack (like a dining hall's tray
or a function's stack frame), and pop retrieves the topmost element from the stack, decrementing
the stack's size in the process.

Your task here is to implement push and pop for a stack that stores char*s. Per stack.c,
we've defined a stack as

typedef struct

{
char** strings;
int size;
int capacity;

}

stack;

where strings is a pointer to a dynamically-allocated array of char*s (that you'll need to
expand appropriately as more and more char*s are pushed on to the stack); size is the number
of elements currently in the stack (that you'll need to adjust appropriately so that you can track

the location of the "top" of the stack); and capacity is the allocated capacity of the strings
array (which you'll need to adjust, along with the strings array itself, as the stack fills up).

Notice, now, that push is declared as

bool push (char* str);

whereby it should return true if it can successfully put str on the top of the stack and false
otherwise.

On the other hand, pop is declared as
char* pop (void);

whereby pop should return the char* from the top of the stack if there is one and NULL
otherwise.

3<16

This is CS50.
Harvard University Fall 2012

Notice, too, that we've provided code that will test your stack's functionality so that you know
when you're on the right track.

Alright, implement push and pop!

A queue, another fundamental data structure, is used for modeling collections of elements that
follow a "first-in, first-out" (FIFO) pattern of insertion and retrieval. Just as you'd expect with the
line of fanboys at most any Apple Store, the first one in line is the first one to get in and get out
with a new iPhone.

Like stacks (and unlike arrays), queues typically don't allow access to elements in the middle.
Moreover, whereas push and pop adjust a stack's top, a queue's enqueue function places a new
element at a queue's "tail" end, while dequeue retrieves the element at a queue's "head"
(i.e., front).

Notice how, in queue.c, we've defined a queue for char*s:

typedef struct

{
int head;
char** strings;
int size;
int capacity;

}

queue;

Notice how a gqueue, like a stack, encapsulates strings and size. The head field is new,
though. We could consider the element at strings[0] to be the head of the queue and the
element at strings[size - 1] to be the tail, but this would require us to shift all of the
elements from strings[1] to strings[size - 1] down by one position every time we call
dequeue. That's time-wasting work, though, especially if we've got a long queue! Therefore,
we'll store the index of the queue's head element and adjust it as we dequeue elements.

Your job is to implement enqueue and dequeue, whose prototypes are the below.

bool enqgqueue (char* s);
char* dequeue (void) ;

Note that enqueue should return true if str is successfully enqueued and false otherwise.
Likewise, dequeue should return the char* at the queue's head if there is one and NULL if the
queue is empty.

One of the main downsides to storing data in an array is that inserting or deleting an element in
the middle of an array requires shifting other elements to make (or fill in) a gap. In situations
where insertion and deletion of elements is more critical than the retrieval of them, a linked list is
a fantastic tool.

4<16

This is CS50.
Harvard University Fall 2012

Your task this time around is to implement some functions for the provided singly-linked list of
intsin s11.c. Recall that a list is just a sequence of nodes, so there's no 1ist structure; rather,
there's just a node structure that we'll define as

typedef struct node
{
int i;
struct node* next;

}

node;

where i is the integer to be stored in the node and next is a pointer (i.e., a link) to the next node
in the list. By convention, the last node in a list has its next pointer set to NULL.

Alright, it's now up to you to implement these functionsin s11.c:

/**

* Returns the length of the list.
*/

int length(void);

/**

* Returns true if a node in the list contains the value i1 and false
* otherwise.

*/

bool contains (int 1i);

/**
* Puts a new node containing i at the front (head) of the list.
*/

void prepend(int 1i);

/**
* Puts a new node containing i at the end (tail) of the list.
*/

void append(int i) ;

/**

* Puts a new node containing i at the appropriate position in a list
* sorted in ascending order.

*/

void insert sorted(int 1i);

You will probably find it helpful to craft a couple of helper functions for such tasks as building a
new node and inserting a node immediately following another one!

5<16

This is CS50.
Harvard University Fall 2012

Getting Started.

]

O

Welcome back!

Start up your appliance and, upon reaching John Harvard’s desktop, open a terminal window
(remember how?) and execute

updateb0
to ensure that your appliance is up-to-date!

Like Problem Set 4, this problem set comes with some distribution code that you'll need to
download before getting started. Go ahead and execute

cd ~/Dropbox
in order to navigate to your ~/Dropbox directory. Then execute

wget http://cdn.cs50.net/2012/fall/psets/5/pset5.zip

in order to download a ZIP (i.e., compressed version) of this problem set's distro. (Indeed,
pset5.zip, not hacker5.zip.) If you then execute

1s

you should see that you now have a file called pset5.zip in your ~/Dropbox directory. Unzip it
by executing the below.

unzip psetb.zip
If you again execute

1s

you should see that you now also have a pset5 directory. You're now welcome to delete the ZIP
file with the below.

rm -f psetb5.zip

Now dive into that pset5 directory by executing the below.

cd psetb

6<16

This is CS50.
Harvard University Fall 2012

Now execute

1s

and you should see that the directory contains the below.

dictionary.c dictionary.h Makefile questions.txt speller.c

Interesting! Let's get started.

Alotta Mispellings.

O

Theoretically, on input of size n, an algorithm with a running time of n is asymptotically equivalent,
in terms of O, to an algorithm with a running time of 2n. In the real world, though, the fact of the
matter is that the latter feels twice as slow as the former.

The challenge ahead of you is to implement the fastest spell-checker you can! By “fastest,”
though, we’re talking actual, real-world, noticeable seconds—none of that asymptotic stuff this
time.

In speller.c, we've put together a program that’s designed to spell-check a file after loading a
dictionary of words from disk into memory. Unfortunately, we didn’t quite get around to
implementing the loading part. Or the checking part. Both (and a bit more) we leave to you!

Before we walk you through speller.c, go ahead and open up dictionary.h with gedit.
Declared in that file are four functions; take note of what each should do. Now open up
dictionary.c. Notice that we’ve implemented those four functions, but only barely, just
enough for this code to compile. Your job for this problem set is to re-implement those functions
as cleverly as possible so that this spell-checker works as advertised. And fast!

Let’s get you started.

Recall that make automates compilation of your code so that you don’t have to execute clang
manually along with a whole bunch of switches. However, as your programs grow in size, make
won'’t be able to infer from context anymore how to compile your code; you’ll need to start telling
make how to compile your program, particularly when they involve multiple source (i.e., . c) files,
as in the case of this problem set. And so we’ll utilize a Makefile, a configuration file that tells
make exactly what to do. Open up Makefile with gedit, and let's take a tour of its lines.

The line below defines a variable called cc that specifies that make should use clang for
compiling.

CC = clang

7<16

This is CS50.
Harvard University Fall 2012

The line below defines a variable called CFLAGS that specifies, in turn, that clang should use
some flags, most of which should look familiar.

CFLAGS = -ggdb -00 -Qunused-arguments -std=c99 -Wall -Werror

The line below defines a variable called EXE, the value of which will be our program’s name.

EXE = speller

The line below defines a variable called HDRS, the value of which is a space-separated list of
header files used by speller.

HDRS = dictionary.h

The line below defines a variable called 1.1BS, the value of which is should be a space-separated
list of libraries, each of which should be prefixed with -1. (Recall our use of -1cs50 earlier this
term.) Odds are you won't need to enumerate any libraries for this problem set, but we've
included the variable just in case.

LIBS =

The line below defines a variable called SRCsS, the value of which is a space-separated list of C files
that will collectively implement speller.

SRCS = speller.c dictionary.c

The line below defines a variable called 0BJS, the value of which is identical to that of SRCS,
except that each file’s extension is not . c but . o.

OBJS = $(SRCS:.c=.0)
The lines below define a "target" using these variables that tells make how to compile speller.

S(EXE) : $(OBJS) Makefile
$(CC) $(CFLAGS) -o $@ $(OBJS) $(LIBS)

The line below specifies that our .o files all “depend on” dictionary.h and Makefile so that
changes to either induce recompilation of the former when you run make.

S (OBJS) : $ (HDRS) Makefile

Finally, the lines below define another target for cleaning up this problem set’s directory.

clean:
rm -f core $(EXE) *.o

Know that you’re welcome to modify this Makefile as you see fit. In fact, you should if you
create any . c or .h files of your own. But be sure not to change any tabs (i.e., \t) to spaces, since

8<16

This is CS50.
Harvard University Fall 2012

make expects the former to be present below each target. To be safe, uncheck Use Spaces under
Tab Width at the bottom of gedit's window before modifying Makefile.

The net effect of all these lines is that you can compile speller with a single command, even
though it comprises quite a few files:

make speller
Even better, you can also just execute:

make

And if you ever want to delete speller plus any core or .o files, you can do so with a single
command:

make clean

In general, though, anytime you want to compile your code for this problem set, it should suffice
to run:

make

] Okay, next open up speller.c with gedit and spend some time looking over the code and
comments therein. You won’t need to change anything in this file, but you should understand it
nonetheless. Notice how, by way of getrusage, we’ll be “benchmarking” (i.e., timing the
execution of) your implementations of check, 1oad, size, and unload. Also notice how we go
about passing check, word by word, the contents of some file to be spell-checked. Ultimately, we
report each misspelling in that file along with a bunch of statistics.

Notice, incidentally, that we have defined the usage of speller to be
Usage: speller [dictionary] text

where dictionary is assumed to be a file containing a list of lowercase words, one per line, and
text is a file to be spell-checked. As the brackets suggest, provision of dictionary is optional; if
this argument is omitted, speller will use /home/cs50/pset5/dictionaries/large by
default. In other words, running

./speller text

will be equivalent to running

./speller ~cs50/pset5/dictionaries/large text

where text is the file you wish to spell-check.® Suffice it to say, the former is easier to type!

1 . _— ,
Of course, speller will not be able to load any dictionaries until you implement load in dictionary.c! Until then, you'll
see Could not load.

9<16

This is CS50.
Harvard University Fall 2012

Within the default dictionary, mind you, are 143,091 words, all of which must be loaded into
memory! In fact, take a peek at that file to get a sense of its structure and size, as with gedit.
Notice that every word in that file appears in lowercase (even, for simplicity, proper nouns and
acronyms). From top to bottom, the file is sorted lexicographically, with only one word per line
(each of which ends with \n). No word is longer than 45 characters, and no word appears more
than once. During development, you may find it helpful to provide speller with a dictionary
of your own that contains far fewer words, lest you struggle to debug an otherwise enormous
structure in memory. In /home/cs50/pset5/dictionaries/small is one such dictionary. To
use it, execute

./speller ~cs50/pset5/dictionaries/small text

where text is the file you wish to spell-check.> Don’t move on until you’re sure you understand
how speller itself works!

Odds are, you didn’t spend enough time looking over speller.c. Go back one square and walk
yourself through it again!

Okay, technically that last problem induced an infinite loop. But we’ll assume you broke out of it.
Open up questions.txt with gedit and answer each of the following questions in one or more
sentences.

What is pneumonoultramicroscopicsilicovolcanoconiosis?

According to its man page, what does getrusage do?

Per that same man page, how many members are in a variable of type struct rusage?

Why do you think we pass before and after by reference (instead of by value)

to calculate, even though we’re not changing their contents?

4. Explain as precisely as possible, in a paragraph or more, how main goes about reading
words from a file. In other words, convince us that you indeed understand how that
function’s for loop works.

5. Why do you think we used fgetc to read each word’s characters one at a time rather than
use fscanf with a format string like "%s" to read whole words at a time? Put another way,
what problems might arise by relying on fscanf alone?

6. Why do you think we declared the parameters for check and 1oad as const?

wnN e o

So that you can test your implementation of speller, we've also provided you with a whole
bunch of texts, among them the script from Austin Powers: International Man of Mystery, a sound
bite from Ralph Wiggum, three million bytes from Tolstoy, some excerpts from Machiavelli and
Shakespeare, the entirety of the King James V Bible, and more. So that you know what to expect,
open and skim each of those files, as with gedit. For instance, to open austinpowers.txt,
open a terminal window and execute the below.

gedit ~cs50/pset5/texts/austinpowers.txt

% Ibid.

10<16

This is CS50.
Harvard University Fall 2012

Alternatively, launch gedit, select File > Open..., click File System at left, double-click home at
right, double-click ¢s50 at right, double-click pset5 at right, double-click texts at right, then
double-click austinpowers.txt at right. (If you get lost, simply start these steps over!)

Now, as you should know from having read over speller.c carefully, the output of speller, if
executed with, say,

./speller ~cs50/pset5/texts/austinpowers.txt

will eventually resemble the below.? For now, try executing the staff's solution (using the default
dictionary) with the below.

~cs50/pset5/speller ~cs50/pset5/texts/austinpowers. txt

Below's some of the output you'll see. For amusement’s sake, we’ve excerpted some of our
favorite “misspellings.” And lest we spoil the fun, we’ve omitted our own statistics for now.

MISSPELLED WORDS

[...]
Bigglesworth
[...]
Fembots
[...]
Virtucon
[...]
friggin'
[...]
shagged
[...]
trippy
[...]

WORDS MISSPELLED:
WORDS IN DICTIONARY:
WORDS IN TEXT:

TIME IN load:

TIME IN check:

TIME IN size:

TIME IN unload:

TIME IN TOTAL:

TIME IN 1load represents the number of seconds that speller spends executing your
implementation of 1oad. TIME IN check represents the number of seconds that speller
spends, in total, executing your implementation of check. TIME IN size represents the
number of seconds that speller spends executing your implementation of size.
TIME IN unload represents the number of seconds that speller spends executing your
implementation of unload. TIME IN TOTAL is the sum of those four measurements.

® Ibid.

11<16

This is CS50.
Harvard University Fall 2012

Incidentally, to be clear, by “misspelled” we mean that some word is not in the dictionary
provided. “Fembots” might very well be in some other (swinging) dictionary.

Alright, the challenge ahead of you is to implement 1oad, check, size, and unload as efficiently
as possible, in such a way that TIME IN load, TIME IN check, TIME IN size, and
TIME IN unload are all minimized. To be sure, it’'s not obvious what it even means to be
minimized, inasmuch as these benchmarks will certainly vary as you feed speller different
values for dictionary and for text. But therein lies the challenge, if not the fun, of this
problem set. This problem set is your chance to design. Although we invite you to minimize
space, your ultimate enemy is time. But before you dive in, some specifications from us.

O
O

o oo O

You may not alter speller.c.

You may alter dictionary.c (and, in fact, must in order to complete the implementations
of load, check, size, and unload), but you may not alter the declarations of load,
check, size, orunload.

You may alter dictionary.h, but you may not alter the declarations of 1oad, check,
size, orunload.

You may alter Makefile.

You may add functions to dictionary.c or to files of your own creation so long as all of
your code compiles via make.

Your implementation of check must be case-insensitive. In other words, if foo is in
dictionary, then check should return true given any capitalization thereof; none of
foo, £00, £00, £00, £00, Foo, FoO, FOo, and FOO should be considered misspelled.
Capitalization aside, your implementation of check should only return true for words
actually in dictionary. Beware hard-coding common words (e.g., the), lest we pass your
implementation a dictionary without those same words. Moreover, the only possessives
allowed are those actually in dictionary. In other words, even if foo isin dictionary,
check should return false given foo's if foo'sisnotalsoindictionary.

You may assume that check will only be passed strings with alphabetical characters and/or
apostrophes.

You may assume that any dictionary passed to your program will be structured exactly
like ours, lexicographically sorted from top to bottom with one word per line, each of which
ends with \n. You may also assume that dictionary will contain at least one word, that
no word will be longer than LENGTH (a constant defined in dictionary.h) characters, that
no word will appear more than once, and that each word will contain only lowercase
alphabetical characters and possibly apostrophes.

Your spell-checker may only take text and, optionally, dictionary asinput. Although you
might be inclined (particularly if among those more comfortable) to “pre-process” our
default dictionary in order to derive an “ideal hash function” for it, you may not save the
output of any such pre-processing to disk in order to load it back into memory on
subsequent runs of your spell-checker in order to gain an advantage.

You may research hash functions in books or on the Web, so long as you cite the origin of
any hash function you integrate into your own code.

Alright, ready to go?

12<16

This is CS50.
Harvard University Fall 2012

Implement 1oad!

Allow us to suggest that you whip up some dictionaries smaller than the 143,091-word default
with which to test your code during development.

Implement check!

Allow us to suggest that you whip up some small files to spell-check before trying out, oh,
War and Peace.

Implement size!

If you planned ahead, this one is easy!

Implement unload!

Be sure to free any memory that you allocated in 1oad!

In fact, be sure that your spell-checker doesn’t leak any memory at all. Recall that valgrind is
your newest best friend. Know that valgrind watches for leaks while your program is actually

running, so be sure to provide command-line arguments if you want valgrind to analyze
speller while you use a particular dictionary and/or text, as in the below.

valgrind -v --leak-check=full ./speller ~cs50/psetb/texts/austinpowers.txt

If you run valgrind without specifying a text for speller, your implementations of 1oad and
unload won’t actually get called (and thus analyzed).

Don’t forget about your other good buddy, gdb.
And cs50.net/discuss.

How to assess just how fast (and correct) your code is? Well, as always, feel free to play with the
staff’s solution, as in the below.

~cs50/pset5/speller ~cs50/pset5/texts/austinpowers. txt

But also feel free to put your code to the test against your own classmates’! Execute the
command below to challenge THE BIG BOARD.

~cs50/pset5/challenge ~/Dropbox/pset5

We’'ll benchmark your spell-checker with a variety of inputs. Assuming your output’s correct, you
can then surf on over to the course’s home page to see how your speller stacks up against
others’! Feel free to challenge THE BIG BOARD as often as you’d like; it will display your most
recent results.

13<16

This is CS50.
Harvard University Fall 2012

We shall honor those atop THE BIG BOARD.

By the way, you might want to turn off clang’s ~ggdb3 flag when challenging THE BIG BOARD.
And you might want to read up on clang’s -0 flags, as with man.

Congrats! At this point, your speller-checker is presumably complete (and fast!), so it’s time for a
debriefing. In questions.txt, answer each of the following questions in a short paragraph.

7. What data structure(s) did you use to implement your spell-checker? Be sure not to leave
your answer at just “hash table,” “trie,” or the like. Expound on what’s inside each of your
“nodes.”

8. How slow was your code the first time you got it working correctly?

9. What kinds of changes, if any, did you make to your code over the course of the week in

order to improve its performance?
10. Do you feel that your code has any bottlenecks that you were not able to chip away at?

How to Submit.

In order to submit this problem set, you must first execute a command in the appliance and then submit
a (brief) form online.

O

Open a terminal window (as via Menu > Programming > Terminal or within gedit) then execute
updateb50

to ensure you have the latest release of the appliance. Then execute:

cd ~/Dropbox/pset5

And then execute:

1s

At a minimum, you should see dictionary.c, dictionary.h, Makefile, questions.txt,
and speller.c. If not, odds are you skipped some step(s) earlier! If you do see those files, you
are ready to submit your source code to us. Execute

submit50 ~/Dropbox/psetb

and follow the on-screen instructions. That command will essentially upload your entire
~/Dropbox/pset5 directory to CS50’s servers, where your TF will be able to access it. The
command will inform you whether your submission was successful or not. And you may inspect
your submission at cs50.net/submit.

14<16

This is CS50.
Harvard University Fall 2012

You may re-submit as many times as you’d like; we’ll grade your most recent submission. But take
care not to submit after the problem set’s deadline, lest you spend a late day unnecessarily or risk
rejection entirely.

If you run into any trouble at all, let us know via cs50.net/discuss and we’ll try to assist! Just
take care to seek help well before the problem set’s deadline, as we can’t always reply right away!

Head to the URL below where a short form awaits:
https://www.cs50.net/psets/5/

Once you have submitted that form (as well as your source code), you are done!

This was Problem Set 5.

15<16

