This is CS50.
Harvard University Fall 2012

Problem Set 6: Huff'n Puff

due by noon on Thu 11/1

Goals.

. Huff and puff and blow your house in.
. Build and traverse binary trees.

. Compress and decompress actual files.

0<16

This is CS50.
Harvard University Fall 2012

Academic Honesty.

All work that you do toward fulfillment of this course’s expectations must be your own unless
collaboration is explicitly allowed in writing by the course’s instructor. Collaboration in the completion
of problem sets is not permitted unless otherwise stated by some problem set’s specification.

Viewing or copying another individual’s work (even if left by a printer, stored in an executable directory,
or posted online) or lifting material from a book, website, or other source—even in part—and
presenting it as your own constitutes academic dishonesty, as does showing or giving your work, even in
part, to another student or soliciting the work of another individual. Similarly is dual submission
academic dishonesty: you may not submit the same or similar work to this course that you have
submitted or will submit to another. Nor may you provide or make available solutions to problem sets
to individuals who take or may take this course in the future. Moreover, submission of any work that
you intend to use outside of the course (e.g., for a job) must be approved by the course’s instructor or
preceptor.

You are welcome to discuss the course’s material with others in order to better understand it. You may
even discuss problem sets with classmates, but you may not share code. In other words, you may
communicate with classmates in English, but you may not communicate in, say, C. If in doubt as to the
appropriateness of some discussion, contact the course’s instructor or preceptor.

You may turn to the Web for instruction beyond the course’s lectures and sections, for references, and
for solutions to technical difficulties, but not for outright solutions to problems on problem sets or your
own final project. However, failure to cite (as with comments) the origin of any code or technique that
you do discover outside of the course’s lectures and sections (even while respecting these constraints)
and then integrate into your own work may be considered academic dishonesty.

All forms of academic dishonesty are dealt with harshly. If the course refers some matter to the
Administrative Board and the outcome for some student is Admonish, Probation, Requirement to
Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local sanctions on
top of that outcome for that student that may include, but not be limited to, a failing grade for work
submitted or for the course itself.

Fine Print.
Your work on this problem set will be evaluated along four axes primarily.

Scope. To what extent does your code implement the features required by our specification?
Correctness. To what extent is your code consistent with our specifications and free of bugs?

Design. To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or logically)?
Style. To what extent is your code readable (i.e., commented and indented with variables aptly named)?

All students, whether taking the course Pass/Fail or for a letter grade, must ordinarily submit this and all
other problem sets to be eligible for a passing grade (i.e., Pass or A to D-) unless granted an exception in
writing by the course’s instructor or preceptor. No more than one late day may be spent on this, or any
other, problem set.

1<16

This is CS50.
Harvard University Fall 2012

A Section of Questions.

You're welcome to dive into these questions on your own, but know that they'll also be explored in
section! Instead of using CS50 Run or CS50 Spaces for these questions, you'll need to use the CS50
Appliance.

O

Remember that a binary tree has nodes similar to those of a linked list, except instead of one
pointer there are two: one for the left "child" and one for the right "child." Draw a boxes-and-
arrows diagram of a binary tree node containing (Nate's favorite number!) 7, where each child
pointer is NULL.

With a linked list, we only had to store a pointer to the first node in the list in order to remember
the whole list. Likewise, with trees, we only have to store a pointer to a single node in order to
remember the whole tree. This node is called the "root" of the tree.

Build upon your diagram from before (or draw a new one) such that you have a boxes-and-arrows
depiction of a binary tree with the value 7 inside of the root node, 3 inside of the left child node,
and 9 inside of the right child node. Now, make an additional node containing 6, and set the right
child pointer of the node containing 3 point to it.

Let's go over some terminology. We already talked about how the "root" of the tree is the top-
most node in the tree, the one containing 7 in the diagram you just drew. With a pointer to the
root, you can hold on to the entire tree.

The nodes at the bottom of the tree are called the "leaves." In precise terms, these are the nodes
for which both child pointers are NULL. In the diagram described above, the nodes containing 6
and 9 are leaves.

The "height" of a tree is the number of hops you have to make to get from the root to the most
distant leaf. If the tree only has one node, the root, then we say that its height is 0. The tree you
just drew has a height of 2, since you have to make two hops to get from the root to the node
containing 6.

We can also talk about nodes in a tree in terms relative to the other nodes in the tree. For this,
we use terminology taken from family trees: parents, children, siblings, ancestors, and
descendants. Using your best instincts, answer the following questions using the diagram you just
drew! Identify each node by the value it's holding.

* Which node is the parent of 3?

* How many siblings does 9 have? Name them.

* How many ancestors does 6 have? Name them.

* How many descendants does 7 have? Name them.
¢ How many children does 3 have? Name them.

2<16

This is CS50.
Harvard University Fall 2012

We say that a binary tree is "ordered" if for each node in the tree, all of its descendants on the left
(i.e., the left child and of its children) have lesser values and all of its descendants on the right
have greater values (we'll assume that there aren't any duplicate values in our tree). For example,
the tree above is ordered, but it's not the only possible ordered arrangement! Try to draw as
many ordered trees as you can think of using the numbers 7, 3, 9, and 6. How many distinct
arrangements are there? What is the height of each one?

Ordered binary trees are cool because we can search through them in a very similar way to
searching over a sorted array! To do so, we start at the root and work our way down the tree,
towards the leaves, checking each node's value against the value we're searching for. If the
current node's value is less than the value you're looking for, you go next to the node's right child.
Otherwise, you go to the node's left child. At some point, you'll either find the value you're
looking for or you'll run into a NULL, indicating that the value's not in the tree.

Using the initial tree you drew above (with 7 at the root and 3 and 9 as its children, plus 6 as a
child of 3), perform the following lookups. Indicate which nodes you check, in order.

O 6
0 10
0o 1

Ok, let's play with binary trees in C! Open up the CS50 Appliance, navigate your way to

~/Dropbox

and create a new folder for your code as follows.

mkdir section?
Now, create a file called binary tree.c with your favorite editor.

First, we'll need a new type definition for a binary tree node containing int values. Using the
boilerplate typedef below, create a new type definition for a node in a binary tree. If you get
stuck, refer to the singly-linked list node definition from Problem Set 5's Section of Questions!

typedef struct node

{
// TODO
}

node;

Now declare a global node* variable for the root of a tree. In main, initialize the root and put the
value 7 in it.

Create three more nodes: one containing 3, one with 6, and one with 9. Wire them up so that

you've got the same tree structure as the one you drew above, where 7 is at the root, 3 is in the
root's left child, 9 is in the root's right child, and 6 is 3's right child.

3<16

This is CS50
Harvard University Fall 2012

Now write a function called contains with a prototype of

bool contains (int wvalue);

that returns true if the tree pointed to by the global variable root contains value and false
otherwise. Add some sample function calls to main along with some calls to printf to make
sure your function behaves as you expect!

Add some more nodes to your tree: try adding 5, 2, and 8. Make sure your contains code still
works as expected!

So adding nodes manually like this is a bit of a pain, eh? Fortunately, now that you've written
contains, insert isn't too much harder! Implement a function with prototype

bool insert (int wvalue);

that inserts a node containing value into the tree pointed to by the global root variable. Return
true if successful, and return false if you failed for some reason (e.g., lack of sufficient heap
memory, value already in the tree, etc.). Try inserting 1, 4, 9, and 2 (again!) to the tree to make
sure the code works as expected!

Getting Started.

O

Start up your appliance and, upon reaching John Harvard’s desktop, open a terminal window
(remember how?) and execute

update50
to ensure that your appliance is up-to-date!

Like Problem Set 5, this problem set comes with some distribution code that you'll need to
download before getting started. Go ahead and execute

cd ~/Dropbox
in order to navigate to your ~/Dropbox directory. Then execute
wget http://cdn.cs50.net/2012/fall/psets/6/pset6.zip

in order to download a ZIP (i.e., compressed version) of this problem set's distro. If you then
execute

1s

4<16

This is CS50
Harvard University Fall 2012

you should see that you now have a file called pset6.zip in your ~/Dropbox directory. Unzip it
by executing the below.

unzip pset6.zip
If you again execute

1s

you should see that you now also have a pset6 directory. You're now welcome to delete the ZIP
file with the below.

rm -f pset6.zip

Now dive into that pset 6 directory by executing the below.
cd psetb6

Now execute

1s

and you should see that the directory contains the below.

Makefile forest.c hth.txt huffile.h tree.c
dump.c forest.h huffile.c tale.txt tree.h

The Story of the Three Little Pigs.!

O

Once upon a time when pigs spoke rhyme
And monkeys chewed tobacco,

And hens took snuff to make them tough,
And ducks went quack, quack, quack, O!

There was an old sow with three little pigs, and as she had not enough to keep them, she sent
them out to seek their fortune. The first that went off met a man with a bundle of straw, and said
to him:

"Please, man, give me that straw to build me a house."

Which the man did, and the little pig built a house with it. Presently came along a wolf, and
knocked at the door, and said:

"“Little pig, little pig, let me come in."

1
http://books.google.com/books?id= -EOAAAAQAAJ&printsec=titlepage

5<16

This is CS50.
Harvard University Fall 2012

To which the pig answered:

“No, no, by the hair of my chiny chin chin."

The wolf then answered to that:

“Then I'll huff, and I'll puff, and I'll blow your house in."

So he huffed, and he puffed, and he blew his house in, and ate up the little pig.
The second little pig met a man with a bundle of furze, and said:

"Please, man, give me that furze to build a house."

Which the man did, and the pig built his house. Then along came the wolf, and said:
"“Little pig, little pig, let me come in."

“No, no, by the hair of my chiny chin chin."

“Then I'll puff, and I'll huff, and I'll blow your house in."

So he huffed, and he puffed, and he puffed, and he huffed, and at last he blew the house down,
and he ate up the little pig.

The third little pig met a man with a load of bricks, and said:
"Please, man, give me those bricks to build a house with."

So the man gave him the bricks, and he built his house with them. So the wolf came, as he did to
the other little pigs, and said:

"“Little pig, little pig, let me come in."

“No, no, by the hair of my chiny chin chin."

“Then I'll huff, and I'll puff, and I'll blow your house in."

Well, he huffed, and he puffed, and he huffed and he puffed, and he puffed and huffed; but he
could not get the house down. When he found that he could not, with all his huffing and puffing,
blow the house down, he said:

"“Little pig, | know where there is a nice field of turnips."

"Where?" said the little pig.

6<16

This is CS50
Harvard University Fall 2012

"Oh, in Mr. Smith's Home-field, and if you will be ready tomorrow morning | will call for you, and
we will go together, and get some for dinner."

"Very well," said the little pig, "l will be ready. What time do you mean to go?"
"Oh, at six o'clock."

Well, the little pig got up at five, and got the turnips before the wolf came (which he did about six)
and who said:

“Little Pig, are you ready?"
The little pig said: "Ready! | have been and come back again, and got a nice potful for dinner."

The wolf felt very angry at this, but thought that he would be up to the little pig somehow or
other, so he said:

“Little pig, | know where there is a nice apple-tree."
"Where?" said the pig.

"Down at Merry-garden," replied the wolf, "and if you will not deceive me | will come for you, at
five o'clock tomorrow and get some apples."

Well, the little pig bustled up the next morning at four o'clock, and went off for the apples, hoping
to get back before the wolf came; but he had further to go, and had to climb the tree, so that just
as he was coming down from it, he saw the wolf coming, which, as you may suppose, frightened
him very much. When the wolf came up he said:

“Little pig, what! are you here before me? Are they nice apples?"
"Yes, very," said the little pig. "I will throw you down one."

And he threw it so far, that, while the wolf was gone to pick it up, the little pig jumped down and
ran home. The next day the wolf came again, and said to the little pig:

"“Little pig, there is a fair at Shanklin this afternoon, will you go?"
"Oh yes," said the pig, "l will go; what time shall you be ready?"

"At three," said the wolf. So the little pig went off before the time as usual, and got to the fair,
and bought a butter-churn, which he was going home with, when he saw the wolf coming. Then
he could not tell what to do. So he got into the churn to hide, and by so doing turned it round,
and it rolled down the hill with the pig in it, which frightened the wolf so much, that he ran home
without going to the fair. He went to the little pig's house, and told him how frightened he had
been by a great round thing which came down the hill past him. Then the little pig said:

7<16

This is CS50.
Harvard University Fall 2012

"Hah, | frightened you, then. | had been to the fair and bought a butter-churn, and when | saw
you, | got into it, and rolled down the hill."

Then the wolf was very angry indeed, and declared he would eat up the little pig, and that he
would get down the chimney after him. When the little pig saw what he was about, he hung on
the pot full of water, and made up a blazing fire, and, just as the wolf was coming down, took off
the cover, and in fell the wolf; so the little pig put on the cover again in an instant, boiled him up,
and ate him for supper, and lived happy ever afterwards.

Okay, enough fairy tales. Time to get to work.

The challenge ahead is to implement a program called puff that puffs (i.e., decompresses) files
that have been huffed (i.e., Huffman-compressed) with a program that we wrote called huff.
Let's begin with a story of our own.

Once upon a time, there were four little pigs who lived in a four-byte ASCII file. The first little
piggy was an H. The second little piggy was a T. The third little piggy was an H. And the fourth
little piggy was a newline.

Presently came along David A. Huffman, and made a tree out of the piggies' frequencies, per the
figure below.

In a file called tale. txt, finish this tale if (and only if) feeling creative.

When represented in ASCII, each of those piggies takes up 8 bits on disk. But, thanks to Huffman,
we can generally do better. After all, how many bits does it really take to represent any of three
different characters? Just two, of course, as two bits allows us as many as 2 = 4 codes. And so
could we represent, per the figure above, a newline with 00, T with 01, and H with 1. Notice how,
even in this tiny example, the least frequent of characters receive, by design, the longest of codes.

The catch, of course, is that you must be able to reconstruct this tree (or, more generally, recover
these codes) if you wish to puff back to ASCII piggies that have been huffed. Perhaps the simplest
way to enable a program like puf f to decompress files that have huffed is to have huf f include in
those files piggies' original frequencies. With those frequencies can puf £ then re-build the same

8<16

This is CS50
Harvard University Fall 2012

tree that huff built. Of course, inclusion of this metadata does cost us some space. But, for large
inputs, that cost is more than subsumed by savings in bits.

We chose, for huff, to include these frequencies and more. Let's get you started on puff.

] Open up huffile.h and spend some time looking over the code and comments therein. This file
defines a "layer of abstraction" for you in order to facilitate your implementation of puf £ (and our
implementation of huff). More technically, it defines an APl (application programming interface)
with which you can read (or write) Huffman-compressed files.

Ultimately, this problem set is as much about learning how to interface with someone else's code
(e.g., ours) as it is about building and traversing binary trees. After all, after CS50, you won't
always have someone to walk you through code. But what once looked like Greek should at least
now look like C to you!?

But we won't let go of that hand just yet. Notice that, in huffile.h, we have defined the
following struct to wrap all our metadata.

typedef struct

{
int magic;
int frequencies[SYMBOLS];
int checksum;

}

Huffeader;

As its own name suggests (say it three times fast), this st ruct defines a header for a Huffman-
compressed file (much like BITMAPFILEHEADER defined a header for BMPs). Before writing out
bits (i.e., codes), our implementation of huf £ first writes out this header, so that your version of
puff can read in the same and reconstruct the tree we used for huffing.

Besides symbols' frequencies, notice that this header includes some magic! Much like JPEGs begin
with 0xffd8, so have we decided (arbitrarily) that huff-compressed files must begin with
0x46465548.> A "magic number," then, is a form of signature. We have also decided that huffed
files' headers must end with a "checksum," a summation of all frequencies therein.

In other words, if, upon reading some file's first several bytes into a Huffeader, magic is not
0x46465548 or checksum does not equal the sum of all values in frequencies, then that file
was most certainly not huffed!*

2UnIessyouactuaHyspeakGreek.
3VVesay"arbitrarin,"but0x46465548actuaHyhasmeaning.Whatdoesitspe”?

* of course, some non-huffed file's first several bytes might happen to satisfy these conditions as well, in which
case it could be mistaken for a huffed file. Probabilistically, that's not too likely to happen. But it's because of that
chance that some operating systems (also) rely on files' extensions (e.g., .bmp) to distinguish files' types.

9<16

This is CS50
Harvard University Fall 2012

Take a look now at hth.txt, but take care not to make any changes. In that file are those four
little piggies (even though gedit might not show you the newline). Let's blow their house down
and compress them with our implementation of huff. Run the below to save a compressed
version of hth.txt in a new file called hth.bin.

~cs50/pset6/huff hth.txt hth.bin

Let's take a look at the huffed file's size. Run the below.

ls -1 hth.txt hth.bin

Ack! Per that command's output, it seems that we have "compressed" 4 bytes to 1034! Such is
the cost of that metadata for particularly small files. For larger inputs, though, it won't be so bad.

Incidentally, hth.txt is a considered an ASCII (or text) file because it contains ASCII codes, and
hth.bin is a binary file because it does not. That we've chosen extensions of .txt for the
former and .bin is just for convenience and not by requirement.

Let's take a look at the contents of hth.bin in hex with an old friend. Run the below.

xxd -g 4 hth.bin

Scroll back on up to the start of xxd's output. Take a look at this huffed file's first four bytes!
Wait a minute, talk about magic, those bytes are reversed! (And, yes, they do spell HUFF if you
insist on interpreting those bytes as ASCII, as xxd does in its rightmost column. So clever we are.)
Recall that a huffed file's first four bytes were supposed to be 0x46465548, not the reverse. So
what's going on?

It turns out that the CS50 Appliance is "little endian," whereby multi-byte primitives (like int) are
stored with their little end (i.e., least-significant byte) first. Generally speaking, you need not
worry about endianness when programming, unless you start manipulating binary files (or
network connections). We mention it now so that you understand xxd's output!

Notice, by the way, how many 0s are in hth.bin. Of course, hth.txt only had three unique
piggies, so most of those 0s represent the frequencies of ASCIl's other (absent) 253 characters.
But, if you look closely, scattered among all those 0s are 01000000, 02000000, and 01000000,
which are, of course, little-endian representations of 1, 2, and 1 (in decimal), the frequencies of
newlines, H, and T, respectively, in hth.txt! Lower in xxd's output you'll find 04000000, the
sum (i.e., checksum) of those counts. The second-to-last byte in hth.bin appears to be b0 and
the very last 06. Hm, back to those in a bit.

Next take a look now at dump.c. That file implements a program with which you can dump huf f-
compressed files in human-readable form. Look over its comments and code to learn how it
works.

Next take a look at Makefile, in which we've defined a target for dump but not one for puff.

(We'll leave that to you.) Notice how dump depends not only on dump. ¢ but also on other .c and

10<16

This is CS50
Harvard University Fall 2012

.h files as well. That dump. c itself appears relatively simple is because we have abstracted away
important, but potentially distracting, details with APIs.

Go ahead and build dump with Make. (Remember how?) Then run it as follows.

./dump hth.bin

You should see output like the below.

[I0) -0 9 0 E O 00 10 i 0 u 0
"0 . 0 : 0 F O R O ~ 0 3 0 v 0
0 /0 ; 0 GO S 0 0 k 0 w 0
$ 0 00 <0 H 2 T 1 0 10 x 0
% 0 10 =0 I0 U o0 a0 m O y O
& 0 20 > 0 J 0 v 0 b 0 n 0 z 0
"0 30 20 K 0 W 0 c 0 o 0 {0
(0 4 0 @0 L O X 0 d 0 p O | 0
) O 50 A0 M 0 Y O e 0 g 0 } 0
* 0 6 0 B O N O z 0 £f 0 r 0 ~ 0
+ 0 7 0 co 00 [0 g 0 s 0

, 0 8 0 DO PO \ O h 0 t 0

101100

Atop dump's output is a table of frequencies, not for all ASCII characters but for those that display
nicely in terminal windows. Notice that the frequencies of H and T are as expected. (Newlines are
simply not among the characters shown.)

Below that table, meanwhile, is a sequence of six bits, the compressed version of hth.txt!
Recall, after all, that our tree told us to represent newline with 00, T with 01, and H with 1. And,
so, the above indeed represents our original text!

Let's take one more look at this file with xxd, this time in binary. Try the below.

xxd -b hth.bin

Take a close look at hth.bin's final two bytes: 10110000 and 00000110. (You may recall these
bytes as b0 and 06 in hex.) Notice how the former is but 101100 padded with two trailing Os.
Why those two 0s? Well, you can write individual bytes to disk but not individual bits. Ergo, even
though our implementation of huff only called bwrite six times in order to write out six bits, our
API ultimately has to write out eight bits. To avoid confusion when it's time to read those bits
back in, our APl employs a trick. We keep track, in a huffed file's very last byte, of just how many
bits in the file's second-to-last byte are valid so that bread can avoid returning trailing padding,
lest you, in writing puf £, mistake extra 0s for encoded symbols!

If curious, take a look at huffile.c. Asis the case with most APls, you don't need to understand
how our APl works underneath the hood. After all, you've probably never seen stdio.c, but that
hasn't stopped you from using printf! But you should absolutely understand what you can do
with our API. For that knowledge, you can rely on huffile.h alone.

11<16

This is CS50
Harvard University Fall 2012

A final stroll through some code, if we may. Recall that, to implement Huffman's algorithm, you
can begin with a "forest" of single-node trees, each of which represents a symbol and its
frequency within some body of text. Iteratively can you then pick from that forest the two trees
with lowest frequencies, join them as siblings with a new parent whose own frequency is the sum
of its children's, and plant that new parent in the forest. In time will this forest converge to a lone
tree whose branches represent symbols' codes.

Also recall that the manner in which ties between roots with equal frequencies are broken is
important to standardize, lest huf f and puf £ build different trees. And so we have provided you
not only with an API for reading (or writing) Huffiles but also with an APl for forest
management.” Take a look first at tree.h. Notice that we have provided the following definition
for trees' nodes.

typedef struct tree

{
char symbol;
int frequency;
struct tree* left;
struct tree* right;

}

Tree;

Rather than store symbols' frequencies as percentages (i.e., floating point values), a node, per this
definition, instead stores raw counts.

As the design of tree.h suggests, rather than ever malloc a Tree yourself, you should instead
call mktree, which will not only malloc a Tree for you but also initialize its members to defaults.
Similarly should you never call free on a Tree but, instead, invoke rmt ree, which will delete that
Tree's root for you plus all its descendants.®

Now take a look at forest.h. This APl happens to implement a Forest as a linked list of P1ots,
each of which houses a Tree. But you need not worry about such details, as we have abstracted
them away for the sake of simplicity (and standardization). Rather than ever malloc or free a
Forest yourself, you should instead, much like for Trees, call mkforest or rmforest,
respectively. Moreover, rather than ever touch a Forest's linked list, you should instead add
Trees to a Forest with plant and remove Trees from a Forest with pick. Note that this API
does not build Huffman's tree for you! Rather, it maintains Trees that you yourself have planted
in sorted order so that you can pick those same Trees in order of increasing frequency, with the
API (and not you) breaking ties when necessary.

If curious as to how this all works, take a look at tree.c and forest.c. But, again, most
important is that you familiarize yourself with these APIs by way of those header files.

> Speaking of forest management, did you know that Harvard owns a forest? Procrastinate at
http://harvardforest.fas.harvard.edu/.
® If familiar with, say, C++, you can think of mktree as a sort of constructor and rmtree as a sort of destructor.

12<16

This is CS50.
Harvard University Fall 2012

Alright, implement in a file called puff.c a program called puff that decompresses huffed files!
Allow us to put forth the following requirements.

O Your program must accept two and only two command-line arguments: the name of a file to
puff followed by the name under which to save the puffed output. If a user does not
provide such, your program should remind the user of its usage and exit, with main
returning 1.

0 Your program must ensure that its input is (most likely) indeed huffed by reading, with

hread, its first bytes into a Huf feader and checking its magic number and checksum. If its

input is not a valid huffed file, your program should inform the user accordingly and exit,

with main returning 1.

You must build Huffman's tree using our APIs for Forests and Trees. That tree must not

include nodes for symbols not appearing in the huffed file.

After picking two trees from a forest in order to join them as siblings with a new parent, the

first tree picked should become the parent's left child, the second the parent's right.

Assume that left branches represent 0s and right branches 1s.

If puffing a file that contains only one unique symbol, assume the symbol's code is just 0.

You must read in bits using our API for Huffiles.

You need not ever call bwrite or hwrite, unless you'd also like to implement huf f!

You must handle all possible errors gracefully by printing error messages and returning 1;

under no circumstances should we be able to crash your code.

You may not leak any memory. Before quitting, even upon error, your program must free

any memory allocated on its heap, either with free or, if allocated by our APls, with

hfclose, rmtree, and/or rmforest

[0 You must update Makefile (however you see fit) with a target for puff. Recall, though,
that a target's second line must begin with a tab. Recall, though, that when you hit Tab in
gedit, though, you do not get \t but instead four spaces instead by default. To insert a
true tab using gedit, uncheck Use Spaces under Tab Width at the bottom of gedit's
window. Then can you hit Tab to insert \ t.

o ooooo o oo

If unsure where to begin, return your attention to dump. ¢, as you can adopt its overall framework
as your own. Of course, dump stops short of building Huffman's tree, so there's still work to be
done!

How to determine if your code is correct? Well, certainly play with the staff's solutions to both
huff and puff in ~cs50/pset6, comparing our output to yours. Also use 1s with its -1 switch
to compare files' sizes. And, rather than compare outputs visually (e.g., with gedit, xxd, cat,
more, Or less), you can use a popular tool called di ff. For instance, suppose that you've already
run the below.

~cs50/pset6/huff hth.txt hth.bin

And now you'd like to try puffing hth.bin with your own version of puff, and so you run a
command like the below.

./puff hth.bin puffed.txt

13<16

This is CS50.
Harvard University Fall 2012

You can now compare hth.txt and puffed. txt for differences by executing the below.

diff hth.txt puffed.txt

If those the files are identical, then diff will say nothing! Otherwise it will report lines with
differences.

Of course, best to test puf £ with more than just hth.txt. Odds are, you have a whole bunch of
text files within reach from Problem Set 5 that you can huff with our huff and puff with your
puff! In theory, you can huff binary files as well, even though (conceptually, at least) Huffman's
algorithm is meant for ASCII files.

And how can you chase down memory leaks? Well, you know your code best, so certainly think
about where your own code might leak. Focus, in particular, on any blocks of code in which your
code might return prematurely (as in the case of some error); it's not likely sufficient to free up
your heap only, say, at the very end of main.

But also take advantage of valgrind, whose job is to report memory-related mistakes and, in
particular, leaks. Run it with a command like the below.

valgrind ./puff hth.bin puffed.txt

Admittedly, valgrind's output is a bit cryptic, but keep an eye out for ERROR SUMMARY and,
possibly, LEAK SUMMARY. For additional hints, run it with some optional switches, per the below.

valgrind -v --leak-check=full ./puff hth.bin puffed.txt
If uncertain how to interpret its output, simply contact the staff!
And don't forget to use gdb when debugging!

Alright, off you go. HTH!

How to Submit.

In order to submit this problem set, you must first execute a command in the appliance and then submit
a (brief) form online.

O

Open a terminal window (as via Menu > Programming > Terminal or within gedit) then execute

update50

to ensure you have the latest release of the appliance. Then execute:

cd ~/Dropbox/pset6

14<16

This is CS50.
Harvard University Fall 2012

And then execute:

1s

At a minimum, you should see Makefile, dump.c, forest.c, forest.h, hth.txt,
huffile.c, huffile.h, puff.c, tale.txt, tree.c, and tree.h. If not, odds are you
skipped some step(s) earlier! If you do see those files, you are ready to submit your source code
to us. Execute

submit50 ~/Dropbox/pset6

and follow the on-screen instructions. If prompted for an "endpoint," input apps.cs50.net. If
prompted for a ‘"submit key" (as you were a few weeks back), visit
https://apps.cs50.net/settings/submit, logging in if prompted, then click the red
button, then highlight and copy your submit key, and then paste it into your terminal window, as
via Edit > Paste. (If pasting doesn't seem to work, simply type it out carefully!) Your submit key
should be cached by the appliance so that you shouldn't have to input it again if you re-submit this
problem set.

As always, that command will essentially upload your entire ~/Dropbox/pset6 directory to
CS50’s servers, where your TF will be able to access it. The command will inform you whether
your submission was successful or not. And you may inspect your submission at
cs50.net/submit.

You may re-submit as many times as you’d like; we’ll grade your most recent submission. But take
care not to submit after the problem set’s deadline, lest you spend a late day unnecessarily or risk

rejection entirely.

If you run into any trouble at all, let us know via cs50.net/discuss and we'll try to assist! Just
take care to seek help well before the problem set’s deadline, as we can’t always reply right away!

Head to the URL below where a short form awaits:
https://www.cs50.net/psets/6/

Once you have submitted that form (as well as your source code), you are done!

This was Problem Set 6.

15<16

