
1

Week 2, continued

This is CS50. Harvard University. Fall 2014.

Cheng Gong

Table of Contents

Introduction ... 1

Data Representation .. 2

Strings ... 2

Typecasting .. 8

Abstraction .. 10

Arrays ... 12

Command-Line Arguments .. 16

Cryptography .. 16

Introduction

• Ask questions online at http://cs50.harvard.edu/discuss.

• Today we’ll talk more about data representation and cryptography, or scrambling

information, but first a story from yesteryear.

Radio Orphan Annie’s Secret Decoder Ring is a child-friendly form of cryptography,

with two discs that rotates independently, each with a set of letters, such that A

might now map to B , B to something like C , etc.

This clip1 from A Christmas Story2 shows a child, Ralphie, excitedly decoding the

secret message from the radio, only to find that it is an advertisement for Ovaltine,

a beverage popular many years ago.

• CS50 Lunch will again be Friday 1:15pm, RSVP at http://cs50.harvard.edu/rsvp.

1 http://www.youtu.be/GjcHmboOyrs?t=1m36s
2 http://en.wikipedia.org/wiki/A_Christmas_Story

http://cs50.harvard.edu/discuss
http://www.youtu.be/GjcHmboOyrs?t=1m36s
http://en.wikipedia.org/wiki/A_Christmas_Story
http://cs50.harvard.edu/rsvp
http://www.youtu.be/GjcHmboOyrs?t=1m36s
http://en.wikipedia.org/wiki/A_Christmas_Story

Week 2, continued

2

Data Representation

Strings

• Let’s say we want to represent a string for Zamyla’s name. We can place each

character, or char , in its own box:

| Z | a | m | y | l | a |

• It’s useful to think of strings as composed of char puzzle pieces since we can access

individual characters more easily. Let’s look at string-0.c 3:

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 string s = GetString();

 for (int i = 0; i < 6; i++)

 {

 printf("%c\n", s[i]);

 }

}

• In line 10 we use %c\n to print each character on its own line, and to get each

character, we use s[i] , as in the "box number" of the string s :

 s: | Z | a | m | y | l | a |

 0 1 2 3 4 5

• So s[0] would get us Z , s[1] a , and so on, and as i is increased by the for

loop, we will move through the string.

3 http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/string-0.c

http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/string-0.c
http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/string-0.c

Week 2, continued

3

• But wait, this code won’t compile, because we’re missing header files. So let’s add

stdio.h for printf , and cs50.h to have string and GetString .

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 string s = GetString();

 for (int i = 0; i < 6; i++)

 {

 printf("%c\n", s[i]);

 }

}

• Now let’s run this program:

jharvard@appliance (~/Dropbox): ./string-0

Zamyla

Z

a

m

y

l

a

jharvard@appliance (~/Dropbox):

• Looks good. Let’s try it again with Daven’s full name:

jharvard@appliance (~/Dropbox): ./string-0

Davenport

D

a

v

e

n

p

jharvard@appliance (~/Dropbox):

• This bug happened because we put the 6 in the for loop, and we can actually determine

the length of a string with strlen :

Week 2, continued

4

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 string s = GetString();

 for (int i = 0; i < strlen(s); i++)

 {

 printf("%c\n", s[i]);

 }

}

• Now we get a compiler error:

jharvard@appliance (~/Dropbox): make string-0

clang -ggdb3 -O0 -std=c99 -Wall -Werror string-0.c -lcs50 -lm -o

 string-0

string-0.c:8:25: error: implicitly declaring library function 'strlen'

 with type 'unsigned int (const char *)'

 [-Werror]

 for (int i = 0; i < strlen(s); i++)

 ^

string-0.c:8:25: note: please include the header <string.h> or explicitly

 provide a declaration for 'strlen'

1 error generated.

make: *** [string-0] Error 1

jharvard@appliance (~/Dropbox):

• We focus on implicitly declaring library function , which tells us we

need to find the strlen function in another library.

• If we wanted to find out which library has this function, we can go into the terminal and

run man for manual:

jharvard@appliance (~): man strlen

...

STRLEN(3) Linux Programmer's Manual

 STRLEN(3)

NAME

 strlen - calculate the length of a string

Week 2, continued

5

SYNOPSIS

 #include <string.h>

...

• So now we know to include string.h , and compiling and running now seem to work.

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 string s = GetString();

 for (int i = 0; i < strlen(s); i++)

 {

 printf("%c\n", s[i]);

 }

}

• We’ve been taking for granted that our laptop, and the CS50 Appliance, has a large

amount of memory, but if we type for long enough, we can type more characters than

we have memory, much like integers running out of bits.

So we need to anticipate this problem by making sure s has some value that was

indeed returned by GetString . If something goes wrong, GetString will return

a special value, NULL , as in there is no value. We check if s is NULL before we

use it, in string-1.c 4:

4 http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/string-1.c

http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/string-1.c
http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/string-1.c

Week 2, continued

6

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 string s = GetString();

 if (s != NULL)

 {

 for (int i = 0; i < strlen(s); i++)

 {

 printf("%c\n", s[i]);

 }

 }

}

!= means not equal, so we only print the characters in s if there is a string in s .

• Let’s look at string-2.c 5:

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 // get line of text

 string s = GetString();

 // print string, one character per line

 if (s != NULL)

 {

 for (int i = 0; i < strlen(s); i++)

 {

 printf("%c\n", s[i]);

 }

 }

}

5 http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/string-2.c

http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/string-2.c
http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/string-2.c

Week 2, continued

7

Remember in line 13 we initialize an int i = 0 and increment it by i++ every

time. The middle part checks that i < strlen(s) is true in order to continue the

loop, meaning we keep printing the character for the length of the string. But every

time i is changing while s is not, so every time we are calculating the length of

s over and over again unnecessarily. We can do a little better:

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 // get line of text

 string s = GetString();

 // print string, one character per line

 if (s != NULL)

 {

 for (int i = 0, n = strlen(s); i < n; i++)

 {

 printf("%c\n", s[i]);

 }

 }

}

Now we initialize two variables, i and n , with n holding the length of the string.

Though this version is equally as correct as the first, it is better design as we

don’t need to answer the same question multiple times, and thus improved its

efficiency.

Note that we don’t have to say int n since it’s the same type as i and it is

in the same statement.

• As an aside, there is no functional difference in this particular context between i++

and ++i , but i++ is more clear that i is being incremented. Alternatively, you can

write i += 1 .

Week 2, continued

8

Typecasting

• Typecasting is the ability to convert one datatype to another. Recall that ASCII maps

letters to numbers. Let’s look at ascii-0.c 6:

#include <stdio.h>

int main(void)

{

 // display mapping for uppercase letters

 for (int i = 65; i < 65 + 26; i++)

 {

 printf("%c: %i\n", (char) i, i);

 }

 // separate uppercase from lowercase

 printf("\n");

 // display mapping for lowercase letters

 for (int i = 97; i < 97 + 26; i++)

 {

 printf("%c: %i\n", (char) i, i);

 }

}

Let’s go through this program. Line 6 runs 26 times, starting from 65 because A

is 65 in ASCII, and in line 8 we print a char and an int . It turns out by using

(char) i we can print i out as a char. The loop below, starting at 97 , prints

the lowercase characters in a similar way:

jharvard@appliance (~/Dropbox/src2w): make ascii-0

clang -ggdb3 -O0 -std=c99 -Wall -Werror ascii-0.c -lcs50 -lm -o

 ascii-0

jharvard@appliance (~/Dropbox/src2w): ./ascii-0

A: 65

B: 66

C: 67

...

6 http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/ascii-0.c

http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/ascii-0.c
http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/ascii-0.c

Week 2, continued

9

X: 88

Y: 89

Z: 90

a: 97

b: 98

c: 99

...

x: 120

y: 121

z: 122

• Let’s look at ascii-1.c 7:

#include <stdio.h>

int main(void)

{

 // display mapping for uppercase letters

 for (char c = 'A'; c <= 'Z'; c++)

 {

 printf("%c: %i\n", c, (int) c);

 }

 // separate uppercase from lowercase

 printf("\n");

 // display mapping for lowercase letters

 for (char c = 'a'; c <= 'z'; c++)

 {

 printf("%c: %i\n", c, (int) c);

 }

}

We can compare c to a character directly in lines 6 and 15 since the underlying

data is still stored in bits and the computer will just compare the numbers. We can

also see that char c can be converted back to an int in lines 8 and 17.

• Let’s look at capitalize-0.c 8:

7 http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/ascii-1.c
8 http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/capitalize-0.c

http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/ascii-1.c
http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/capitalize-0.c
http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/ascii-1.c
http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/capitalize-0.c

Week 2, continued

10

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 // get line of text

 string s = GetString();

 // capitalize text

 for (int i = 0, n = strlen(s); i < n; i++)

 {

 if (s[i] >= 'a' && s[i] <= 'z')

 {

 printf("%c", s[i] - ('a' - 'A'));

 }

 else

 {

 printf("%c", s[i]);

 }

 }

 printf("\n");

}

First, we get a string from the user. In line 11 we iterate over the string character by

character, storing the length of s in n . In line 13 we access each character, and

determine if it’s lowercase by comparing its value to the boundaries of the values of

lowercase characters. In line 15, we notice that a is 97 , A is 65 , b is 98 , B

is 66 , and so on, meaning the difference between lowercase and uppercase is a

constant 32. So we subtract that difference from the lowercase s[i] , which then

gives us an uppercase character.

Abstraction

• Now let’s look at capitalize-1.c 9:

9 http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/capitalize-1.c

http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/capitalize-1.c
http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/capitalize-1.c

Week 2, continued

11

#include <cs50.h>

#include <ctype.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 // get line of text

 string s = GetString();

 // capitalize text

 for (int i = 0, n = strlen(s); i < n; i++)

 {

 if (islower(s[i]))

 {

 printf("%c", toupper(s[i]));

 }

 else

 {

 printf("%c", s[i]);

 }

 }

 printf("\n");

}

Here we can use a toupper function declared in ctype.h which we also

included, and we call it by passing it s[i] within the parentheses. We also use

islower to check if a character is lowercase. Notice that these functions were

probably implemented with code similar to the previous example, but are nicely

named and already exist for us to use. This follows along with the idea of abstracting

away lower level details and using these functions to help us.

If we look at the man page for toupper , we see this:

...

RETURN VALUE

 The value returned is that of the converted letter, or c if the

 conversion was not possible.

...

Week 2, continued

12

So now we can improve the code in capitalize-2.c10 by removing the if

condition and allowing toupper to do the work:

#include <cs50.h>

#include <ctype.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 // get line of text

 string s = GetString();

 // capitalize text

 for (int i = 0, n = strlen(s); i < n; i++)

 {

 printf("%c", toupper(s[i]));

 }

 printf("\n");

}

Remember that we should also make sure that s is not NULL , or have a do-

while loop prompt the user for a string until an acceptable one is given.

• For functions in the various libraries, stdio.h , cs50.h , string.h , ctype.h ,

reference.cs50.net11 has user-friendly explanations that are quite helpful.

Arrays

• A volunteer from the audience, Alex, writes Zamyla on the screen, simulating

GetString . He then writes Belinda , and then Gabe . If we think about the screen

as all the memory we have, we notice that Alex wrote them with some spacing between

the names. A computer has a grid of memory as well:

| Z | a | m | y | l | a | | |

10 http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/capitalize-2.c
11 http://reference.cs50.net

http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/capitalize-2.c
http://reference.cs50.net
http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/capitalize-2.c
http://reference.cs50.net

Week 2, continued

13

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

• The computer wants to be efficient, and use as much as the memory as possible:

| Z | a | m | y | l | a |\0 | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

• Strings end with a \0 which, in binary, is eight 0s in a row. And this tells a computer

that this is the end of a string in memory. So Belinda is added like so:

| Z | a | m | y | l | a |\0 | B |

| e | l | i | n | d | a |\0 | |

| | | | | | | | |

| | | | | | | | |

• And we can continue with even more names:

| Z | a | m | y | l | a |\0 | B |

| e | l | i | n | d | a |\0 | G |

| a | b | e |\0 | D | a | v | e |

| n |\0 | | | | | | |

Week 2, continued

14

• So this general idea of storing items in boxes is known as an array . An array is a

type of data structure, with a continguous number of the same type of data, back-to-

back. A string is just an array of char variables, and we can even put numbers

in an array. Arrays will generally have this format:

type name[size];

• Now say we wanted to get the ages of a number of people in the room. We might start

with:

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 int age1 = GetInt();

 int age2 = GetInt();

 int age3 = GetInt();

 // do something with those numbers ...

}

• But this will limit us to only ever storing exactly 3 ages. So we can solve this problem

with ages.c 12:

12 http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/ages.c

http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/ages.c
http://cdn.cs50.net/2014/fall/lectures/2/w/src2w/ages.c

Week 2, continued

15

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 // determine number of people

 int n;

 do

 {

 printf("Number of people in room: ");

 n = GetInt();

 }

 while (n < 1);

 // declare array in which to store everyone's age

 int ages[n];

 // get everyone's age

 for (int i = 0; i < n; i++)

 {

 printf("Age of person #%i: ", i + 1);

 ages[i] = GetInt();

 }

 // report everyone's age a year hence

 printf("Time passes...\n");

 for (int i = 0; i < n; i++)

 {

 printf("A year from now, person #%i will be %i years old.\n", i

 + 1, ages[i] + 1);

 }

}

In line 16, we declare an array that stores exactly n integers. The number in this

case is how big we want the array to be, whereas earlier when we used s[i] we

were retrieving that particular item in the array since it was already declared.

Then we GetInt for each person, storing it in ages[i] as we go through the

loop, meaning the ages will be placed in the first box, second box, and so on of the

ages[] array.

Week 2, continued

16

Finally, we iterate through the array again and print out each age, with 1 added to

demonstrate what we can do after we retrieve the int from the array.

Command-Line Arguments

• It turns out, instead of using GetInt or GetString to get input, we can use

command-line arguments to get words typed into the blinking prompt, after your

program’s name. For example, you might type:

jharvard@appliance (~): ./caesar 13

...

jharvard@appliance (~): ./caesar 7

The number after ./caesar is the command-line argument that can change every

time you run the program, and the program will use it as input.

Cryptography

• In Problem Set 2 we introduce you to cryptography, scrambling information. In

particular, Caesar and Vigenere ciphers will rotate letters to another letter. Caesar adds

a particular number to all the letters, while Vigenere adds a different number to each

letter. In the end, you’ll see that you use the same key to turn plaintext into ciphertext,

and back to plaintext.

In the Hacker Edition, we’ll give you some usernames and encrypted (well,

"hashed") passwords that look like {crypt}1LlBcWwQn$pxTB3yAjbVS/

HTD2xuXFI0 , challenging you to crack them and finding the original passwords.

• A clip from Spaceballs13 humorously has "the stupidest combination I’ve ever heard

in my life": 12345 .

13 http://youtu.be/GjcHmboOyrs?t=48m19s

http://youtu.be/GjcHmboOyrs?t=48m19s
http://youtu.be/GjcHmboOyrs?t=48m19s

	Week 2, continued
	Table of Contents
	Introduction
	Data Representation
	Strings

	Typecasting
	Abstraction
	Arrays
	Command-Line Arguments
	Cryptography

