
1

Week 4, continued

This is CS50. Harvard University. Fall 2014.

Cheng Gong

Table of Contents

Files, Headers, and Hex .. 1

Structs .. 3

Quick Reminder ... 7

GDB .. 7

Strings .. 12

Memory Allocation .. 19

Files, Headers, and Hex

• One of the topics for today is digital forensics, recovering information, and Problem Set

4 will be in this domain.

• David used to work in the district attorney’s office, attempting to find evidence from hard

drive and memory cards that the police brought in.

The portrayal of this process in TV and movies might look like this1, where

characters, in clips from various shows and films, say phrases like "zoom" and

"enhance," that magically cause images to reveal details previously unseen.

• But when we really try to "enhance" images, like that of Daven, we eventually see the

pixels that compose the image, because there are only a finite of bits in the image.

(The bad guy in the reflection in his eye will only be 6 pixels, no matter how far we

try to zoom!)

• We’ll explore this in Problem Set 4 with file I/O, where I/O just means input/output.

None of the programs we’ve worked with so far have been saving to disk by creating

or changing files.

• An example of a file is a JPEG, which is simply an image file.

1 http://youtu.be/LhF_56SxrGk

http://youtu.be/LhF_56SxrGk
http://youtu.be/LhF_56SxrGk

Week 4, continued

2

• What’s interesting is that files can typically be identified by certain patterns of bits.

Different files, like a JPEG or a PNG (image file) or a GIF (image file) or a Word

document or a Excel spreadsheet, will have different patterns of bits, and those patterns

are usually at the top of the file, so when a computer opens it, it can recognize, say, a

JPEG as an image, and display it to the user as a graphic. Or, it might look like a Word

doc, so let’s show it to the user as an essay.

• For instance, the first three bytes of a JPEG are:

 255 216 255

• Next week we’ll be poking more deeply into files to see what’s always been there.

• But first, realize that "what’s there" generally isn’t written in decimal numbers like above.

• Computer scientists actually tend to express numbers in hexadecimal, as opposed to

decimal or binary.

• Recall that decimal uses 10 digits, 0-9, while binary is composed of 2 digits, 0 and 1.

• Hexadecimal means that we will have 16 such digits, 0-9 and a, b, c, d, e, f.

"a" is 10, "b" is 11, and so on.

• How can this be useful? Well let’s write out the bits that represent these numbers:

 255 216 255

 11111111 11011000 11111111

• This is interesting because a byte has 8 bits, and if we break each byte into two chunks

of 4 bits, each set of 4 bits will correspond to exactly one hexadecimal digit:

 255 216 255

 1111 1111 1101 1000 1111 1111

 f f d 8 f f

• To make this more readable, we remove the whitespace and add 0x , just to signify

that the characters in the last row are in hexadecimal:

 255 216 255

 1111 1111 1101 1000 1111 1111

 f f d 8 f f

 0xff 0xd8 0xff

• Note that we can also convert two hexadecimal digits to 8 bits in binary, or one byte,

making it especially useful for representing binary data.

Week 4, continued

3

• Another image file format is a bitmap file, BMP. One example of an image in that format

is bliss.bmp , a very familiar rolling green hill set against a blue cloudy sky (the

default Windows XP wallpaper on millions of PCs).

A bitmap is just a pattern of pixels, or dots, a "map of bits," if you will.

• What’s interesting, though, is that its beginnings are more than just a few bytes. Its

header has a whole bunch of numbers, bytes, with their orders and values determined

years ago by its author, Microsoft. Indeed, Microsoft has named the types of those

values things like WORD and DWORD and LONG , but those are simply data types like

int , different names for the same thing.

• So when someone clicks on a BMP file, the image is only shown because the operating

system (or image-viewing program, really) noticed all of these bits at the beginning of

the file and recognized that it was a BMP. More on this later.

Structs

• Let’s look at a simpler file first:

#include <cs50.h>

#include <stdio.h>

#include <string.h>

#include "structs.h"

// number of students

#define STUDENTS 3

int main(void)

{

 // TODO

}

• Let’s say we want to start creating a database of every student, and start by saving the

name of a student and their house.

• We see that there are 3 such STUDENTS , so we can probably use something like

a for loop to GetString a name and house for each of them. And we can start

by instinctively:

Week 4, continued

4

#include <cs50.h>

#include <stdio.h>

#include <string.h>

#include "structs.h"

// number of students

#define STUDENTS 3

int main(void)

{

 string names[STUDENTS];

 string houses[STUDENTS];

 for (int i = 0; i < STUDENTS; i++)

 {

 names[i] = GetString();

 houses[i] = GetString();

 }

 // TODO later...

}

So this is correct, as we create arrays to store the names and houses , and iterate

through for the number of students, even if it’s not very user-friendly.

• But this is not very good design. What if they had an ID number or email or Twitter

handle, or more details to associate? To add it we’d have to do something like this:

Week 4, continued

5

#include <cs50.h>

#include <stdio.h>

#include <string.h>

#include "structs.h"

// number of students

#define STUDENTS 3

int main(void)

{

 string names[STUDENTS];

 string houses[STUDENTS];

 int ids[STUDENTS];

 string twitters[STUDENTS];

 ...

}

But soon, if we keep adding, we’ll have something pretty big and unwieldy.

• We can use a higher-level data structure to hold something of a type student , and

we see an example of this in structs.h 2:

#include <cs50.h>

// structure representing a student

typedef struct

{

 string name;

 string house;

}

student;

In fact, we’ve already been using structs in Problem Set 3, since there’s no such

thing as a GRect or GOval in C. The SPL has those data types, implemented

with the approach shown above.

• The keywords typedef and struct on line 4 just mean define a type — a structure — that

is a container for multiple things, and inside that structure will be a string called

2 http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/structs.h

http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/structs.h
http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/structs.h

Week 4, continued

6

name and a string called house , and the entire structure will be called student

for convenience.

• student is now a data type just like int and string and GRect and others.

• Now we can do something like this, in structs-0.c 3:

#include <cs50.h>

#include <stdio.h>

#include <string.h>

#include "structs.h"

// number of students

#define STUDENTS 3

int main(void)

{

 // declare students

 student students[STUDENTS];

...

Note that we have one array named students , with each element of the type

student . There are STUDENTS (which we’ve defined in line 8 to be 3) elements

in the students array.

• How do we access name and house and other fields, or items, in a struct ? Well

we scroll down in structs-0.c :

3 http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/structs-0.c

http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/structs-0.c
http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/structs-0.c

Week 4, continued

7

...

int main(void)

{

 // declare students

 student students[STUDENTS];

 // populate students with user's input

 for (int i = 0; i < STUDENTS; i++)

 {

 printf("Student's name: ");

 students[i].name = GetString();

 printf("Student's house: ");

 students[i].house = GetString();

 }

...

• We index into the array in line 11, and use a new syntax of .name to get the field

called name .

• We’ll return to struct s soon!

As an aside, the scene in the Windows XP wallpaper4 is now yellow and gloomy -

or it was when someone went back to get another photo5!

Quick Reminder

• Speaking of images, here’s another one of Daven at Fire and Ice, a reminder that CS50

Lunch is Friday at 1:15pm as usual, RSVP at http://cs50.harvard.edu/rsvp.

GDB

• So where did we leave off on Monday? We introduced this problem of swapping two

variables a and b with a temporary variable called tmp :

4 http://en.wikipedia.org/wiki/Bliss_(image)
5 http://en.wikipedia.org/wiki/Bliss_(image)#mediaviewer/File:Bliss_(location).jpg

http://en.wikipedia.org/wiki/Bliss_(image)
http://en.wikipedia.org/wiki/Bliss_(image)#mediaviewer/File:Bliss_(location).jpg
http://cs50.harvard.edu/rsvp
http://en.wikipedia.org/wiki/Bliss_(image)
http://en.wikipedia.org/wiki/Bliss_(image)#mediaviewer/File:Bliss_(location).jpg

Week 4, continued

8

void swap(int a, int b)

{

 int tmp = a;

 a = b;

 b = tmp;

}

But remember that the problem is that it only swaps the variables locally, in

the function’s own memory (recall the trays from Annenberg that represent each

function’s slice of memory, and how the swap function doesn’t have access to the

variables in main , but rather copies).

• Let’s open our friend noswap.c 6:

6 http://cdn.cs50.net/2014/fall/lectures/4/m/src4m/noswap.c

http://cdn.cs50.net/2014/fall/lectures/4/m/src4m/noswap.c
http://cdn.cs50.net/2014/fall/lectures/4/m/src4m/noswap.c

Week 4, continued

9

/**

 * noswap.c

 *

 * David J. Malan

 * malan@harvard.edu

 *

 * Should swap two variables' values, but doesn't! How come?

 */

#include <stdio.h>

void swap(int a, int b);

int main(void)

{

 int x = 1;

 int y = 2;

 printf("x is %i\n", x);

 printf("y is %i\n", y);

 printf("Swapping...\n");

 swap(x, y);

 printf("Swapped!\n");

 printf("x is %i\n", x);

 printf("y is %i\n", y);

}

/**

 * Fails to swap arguments' values.

 */

void swap(int a, int b)

{

 int tmp = a;

 a = b;

 b = tmp;

}

• In lines 16 and 17 we initialized x and y , had printfs , and then called swap on

line 22. swap , on line 31, might look correct on first glance, but isn’t.

• Let’s warm up by investigating with our new friend gdb :

Week 4, continued

10

jharvard@appliance (~/Dropbox/src4w): gdb ./noswap

Reading symbols from ./noswap...done.

• Now let’s just run it:

(gdb) run

Starting program: /home/jharvard/noswap

x is 1

y is 2

Swapping...

Swapped!

x is 1

y is 2

[Inferior 1 (process 4922) exited normally]

• That wasn’t quite so useful, since it just ran the program. Let’s pause execution with

break , and we can specify a line like break 10 , but let’s just break at the main

function:

(gdb) break main

Breakpoint 1 at 0x80484ac: file noswap.c, line 16.

Indeed, if we glance back at our source code, line 16 is the first command in main .

• Now we can run the program again:

(gdb) run

Starting program: /home/jharvard/noswap

Breakpoint 1, main () at noswap.c:16

16 int x = 1;

• And it’s paused. Let’s print x :

(gdb) print x

$1 = 0

But it’s 0 . gdb has paused execution to just before line 16, so x has no assigned

value but rather whatever was left in memory prior (a garbage value), and here we

got lucky with a clean value of 0 .

• Let’s say next and print x again:

Week 4, continued

11

(gdb) next

17 int y = 2;

(gdb) print x

$2 = 1

• And indeed we see 1 . What if we print y ?

(gdb) print y

$3 = 134514064

• We see another garbage value as expected, with those bits from some other program

that used the memory last to store something. Not to worry, we can proceed:

(gdb) next

19 printf("x is %i\n", x);

(gdb) print y

$4 = 2

• And y is 2 as expected. Moving on:

(gdb) n

x is 1

20 printf("y is %i\n", y);

(gdb) n

y is 2

21 printf("Swapping...\n");

(gdb) n

Swapping...

22 swap(x, y);

• But now we want to go inside swap , so we use the step command:

(gdb) step

swap (a=1, b=2) at noswap.c:33

33 int tmp = a;

(gdb) print tmp

$5 = -1209908752

• tmp has a garbage value again, but we can see it’s correct after we initialize it.

• And remember we have a and b from the source code where swap is declared as

void swap(int a, int b) , so it refers to the values passed in as a and b , and

remember that those are copies of x and y held by main :

Week 4, continued

12

(gdb) next

34 a = b;

(gdb) print tmp

$6 = 1

(gdb) print a

$7 = 1

(gdb) next

35 b = tmp;

(gdb) print a

$8 = 2

• Now we see that a is 2 , after we said next and executed line 34. We can also

check that b is 1 and tmp is still there:

(gdb) next

36 }

(gdb) print a

$9 = 2

(gdb) print b

$10 = 1

(gdb) print tmp

$11 = 1

• Let’s say continue to finish the program:

(gdb) continue

Continuing.

Swapped!

x is 1

y is 2

[Inferior 1 (process 4946) exited normally]

(gdb)

• gdb didn’t fix the problem, but helped us realize that our code didn’t have an impact.

Strings

• So let’s solve this problem. We’re now peeling back a layer of abstraction, and realizing

that a string doesn’t actually exist, and instead is a char* with a name of string .

Week 4, continued

13

• Let’s open compare-0.c 7:

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 // get line of text

 printf("Say something: ");

 string s = GetString();

 // get another line of text

 printf("Say something: ");

 string t = GetString();

 // try (and fail) to compare strings

 if (s == t)

 {

 printf("You typed the same thing!\n");

 }

 else

 {

 printf("You typed different things!\n");

 }

}

• We get two strings, and try to compare them. We make it and try it out:

jharvard@appliance (~/Dropbox/src4w): make compare-0

clang -ggdb3 -O0 -std=c99 -Wall -Werror compare-0.c -lcs50 -lm -o

 compare-0

jharvard@appliance (~/Dropbox/src4w): ./compare-0

Say something: Daven

Say something: Rob

You typed different things!

jharvard@appliance (~/Dropbox/src4w): ./compare-0

Say something: Gabe

Say something: Gabe

You typed different things!

jharvard@appliance (~/Dropbox/src4w): ./compare-0

Say something: Zamyla

7 http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/compare-0.c

http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/compare-0.c
http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/compare-0.c

Week 4, continued

14

Say something: Zamyla

You typed different things!

jharvard@appliance (~/Dropbox/src4w):

• So what’s going on? The first time we got what we expected, but then we passed in

two strings that were the same! All we’re doing in the source code is getting them and

checking if they are == .

• Well it turns out that, when we say something like:

string s = GetString();

 | |

where the box below s is storing s .

• Now GetString , in our first attempt, returned to us Daven , and also a \0 , like so:

string s = GetString();

 ----- -------------------------

 | | | D | a | v | e | n |\0 |

 ----- -------------------------

• It looks like Daven\0 is made up of many bytes, and if a string is only 4 bytes,

32 bits, how can we fit the entire string inside s ? Well, the row of squares containing

Daven\0 are just bytes in memory. We can think of each byte as having a certain

address, just as buildings might have an address like 33 Oxford Street, 34 Oxford

Street, or 35 Oxford Street, and here, as an example, we start numbering each byte

in memory:

string s = GetString();

 ----- -------------------------

 | | | D | a | v | e | n |\0 |

 ----- -------------------------

 0x1 0x2 0x3 0x4 0x5 0x6

• And now, we can sort of guess that GetString returns not the entire string , but

rather the address to the string : Daven "lives" at 0x1 . So s only contains the

address to that string:

string s = GetString();

Week 4, continued

15

 ----- -------------------------

 |0x1| | D | a | v | e | n |\0 |

 ----- -------------------------

 0x1 0x2 0x3 0x4 0x5 0x6

• And this has been going on since we first introduced a string . All we get when we

ask for a string is the location of where it begins.

Incidentally, programmers can put any address into a variable and try to jump to

that area in memory, and we’ll see how that could be problematic next time.

• But how do we know where a string ends, and the next string begins? Well, the

\0 , special null character, tells us when a string ends.

• So now if we look at the code of compare.c :

...

 // try (and fail) to compare strings

 if (s == t)

 {

 printf("You typed the same thing!\n");

 }

...

• we see that this fails since s and t are pointing to different addresses, since t is

another string , and we’re comparing the locations rather than the first character of

each one, then the next, and so on:

string s = GetString();

 ----- -------------------------

 |0x1| | D | a | v | e | n |\0 |

 ----- -------------------------

 0x1 0x2 0x3 0x4 0x5 0x6

string t = GetString();

 ----- -------------------------

 |...| | | | | | | |

 ----- -------------------------

 ...

Week 4, continued

16

• So let’s fix this problem. If we had to implement it ourselves, we might compare letters

in the two strings, one at a time, until we reached the end of one or both of them. But

we don’t need to, thanks to the strcmp function as shown in compare-1.c 8:

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 // get line of text

 printf("Say something: ");

 char* s = GetString();

 // get another line of text

 printf("Say something: ");

 char* t = GetString();

 // try to compare strings

 if (s != NULL && t != NULL)

 {

 if (strcmp(s, t) == 0)

 {

 printf("You typed the same thing!\n");

 }

 else

 {

 printf("You typed different things!\n");

 }

 }

}

• Notice that we use strcmp in line 18, which will return a negative number, or a

positive number, or zero. Zero would mean that they are equal, and a positive or

negative number would mean something like greater than or less than, if you wanted

to alphabetize those strings.

• We’ve also switched to char* in lines 9 and 13, and really that’s the same as

string , which we made up. For now, just know that the * means the address of

something, and so a char* , as opposed to int* , means an address of a char .

8 http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/compare-1.c

http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/compare-1.c
http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/compare-1.c

Week 4, continued

17

• Going back to the board,

string s = GetString();

 ----- -------------------------

 |0x1| | D | a | v | e | n |\0 |

 ----- -------------------------

 0x1 0x2 0x3 0x4 0x5 0x6

string t = GetString();

 ----- -------------------------

 |...| | | | | | | |

 ----- -------------------------

 ...

that box with 0x1 is really a char* .

• Let’s open copy-0.c 9:

9 http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/copy-0.c

http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/copy-0.c
http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/copy-0.c

Week 4, continued

18

#include <cs50.h>

#include <ctype.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 // get line of text

 printf("Say something: ");

 string s = GetString();

 if (s == NULL)

 {

 return 1;

 }

 // try (and fail) to copy string

 string t = s;

 // change "copy"

 printf("Capitalizing copy...\n");

 if (strlen(t) > 0)

 {

 t[0] = toupper(t[0]);

 }

 // print original and "copy"

 printf("Original: %s\n", s);

 printf("Copy: %s\n", t);

 // success

 return 0;

}

• So in lines 10-14 we get a string s and checks that it’s not NULL in case something

went wrong. Otherwise, we might start going to invalid addresses in memory, and cause

more and more problems.

• Let’s try to copy the string in line 17, and capitalize the first character of t , t[0] , in

line 23. And then we print them.

• But what’s really happening, and where is the bug? Let’s go back to line 17, where we

set string t to s :

Week 4, continued

19

string t = s;

 ------ ------

 |0x50| |0x50|

 ------ ------

• So we’re setting t to point to the same address as s , but that just means when we

change t[0] , the first letter in t , we also change s[0] since s points to the same

thing:

string t = s;

 ------ ------

 |0x50| |0x50|

 ------ ------

 ... | g | a | b | e |\0 | | | |

 0x50

• Let’s run copy-0 :

jharvard@appliance (~/Dropbox/src4w): ./copy-0

Say something: gabe

Capitalizing copy...

Original: Gabe

Copy: Gabe

Memory Allocation

• Hm, we can address this problem with copy-1.c 10:

10 http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/copy-1.c

http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/copy-1.c
http://cdn.cs50.net/2014/fall/lectures/4/w/src4w/copy-1.c

Week 4, continued

20

#include <cs50.h>

#include <ctype.h>

#include <stdio.h>

#include <string.h>

int main(void)

{

 // get line of text

 printf("Say something: ");

 char* s = GetString();

 if (s == NULL)

 {

 return 1;

 }

 // allocate enough space for copy

 char* t = malloc((strlen(s) + 1) * sizeof(char));

 if (t == NULL)

 {

 return 1;

 }

 // copy string, including '\0' at end

 for (int i = 0, n = strlen(s); i <= n; i++)

 {

 t[i] = s[i];

 }

 // change copy

 printf("Capitalizing copy...\n");

 if (strlen(t) > 0)

 {

 t[0] = toupper(t[0]);

 }

 // print original and copy

 printf("Original: %s\n", s);

 printf("Copy: %s\n", t);

 // free memory

 free(s);

 free(t);

 // success

 return 0;

}

Week 4, continued

21

• This looks really complicated, but let’s talk about the concept first. We’ll use a loop to

copy it character by character, but now we need to explicitly allocate memory for t :

string s = GetString();

 ------ ---------------------

 |0x50| | g | a | b | e |\0 |

 ------ ---------------------

 0x50

string t

 ------ ---------------------

 | | | |

 ------ ---------------------

• We declared a string t , but how do we assign a value to it? Well, let’s look at line

17, reproduced below:

char* t = malloc((strlen(s) + 1) * sizeof(char));

We started by writing char* t , which is creating a variable t that will store an

address to a character, creating that left-hand box for t . Then we call malloc , a

function that allocates a certain amount of memory. The argument we pass in is the

size of the memory that we want, which is strlen(s) , the number of characters

in s , + 1 for the \0 character ending the string, all multiplied by the sizeof a

char . (We know a character is one byte, but that may, rarely, vary from computer

to computer.) Finally, malloc will return the address of that chunk of memory,

which might be anywhere:

string s = GetString();

 ------ ---------------------

 |0x50| | g | a | b | e |\0 |

 ------ ---------------------

 0x50

string t

 ------ ---------------------

 |0x88| | |

 ------ ---------------------

 0x88

• Now we can access the memory as an array in a for loop, reproduced below:

Week 4, continued

22

 // copy string, including '\0' at end

 for (int i = 0, n = strlen(s); i <= n; i++)

 {

 t[i] = s[i];

 }

We can do this because each string is stored with characters next to one another,

so we can access them with this array notation.

• To recap, a string all this time was just an address of a character, a pointer, which

in turn is just a number, that we conventionally write in hexadecimal.

• We also check if t == NULL because we might ask for more memory than malloc

is able to give.

• And one final thing, if we return to what we were just looking at, we can replace line

4 below with line 5:

 // copy string, including '\0' at end

 for (int i = 0, n = strlen(s); i <= n; i++)

 {

 // t[i] = s[i];

 *(t + i) = *(s + i);

 }

The * symbol can actually be used for two purposes. We’ve seen char* t = …

 which is declaring that t is a pointer to a char , but if we use * without a word

like char in front of it, it becomes a dereference operator. That just means "go

there" - if an address, like 33 Oxford Street, was written on paper like *(33 Oxford

Street), then we would just go there.

t is the address of the new piece of memory, and s is the address of the original

piece, and i goes from 0 to 1 to 2 to 3 etc, so t + i is just another number,

since these are all addresses with number values.

So on the first pass of the loop, with i = 0 , we’re going to copy g from 0x50

to 0x88 :

string s = GetString();

 ------ ---------------------

 |0x50| | g | a | b | e |\0 |

Week 4, continued

23

 ------ ---------------------

 0x50

string t

 ------ ---------------------

 |0x88| | g | | | | |

 ------ ---------------------

 0x88

On the next pass, i = 1 , we’ll copy a from 0x50 + 1 , 0x51 , to 0x88 + 1 ,

0x89 , and you can see how it’s going to proceed:

string s = GetString();

 ------ ---------------------

 |0x50| | g | a | b | e |\0 |

 ------ ---------------------

 0x50

string t

 ------ ---------------------

 |0x88| | g | a | | | |

 ------ ---------------------

 0x88

• Let’s look at a final program:

int main(void)

{

 int* x;

 int* y;

 x = malloc(sizeof(int));

 *x = 42;

 *y = 13;

 y = x;

 *y = 13;

}

Week 4, continued

24

It first declares two variables, x and y that aren’t integers, but pointers to integers.

Then we say x = malloc(sizeof(int)); , or "give me enough memory to

store an int ", and the address returned by malloc will be stored in x .

Meanwhile, *x = 42 is going to the address stored in x , and putting 42 in it.

Then we do the same with y , going to its address and putting 13 in it. But wait,

y is probably a garbage value, some number left over from previous programs, but

not contain an address to memory we should use to store an int . It’s like trying

to go into a building you don’t own or have permission to enter, and bad things will

happen.

• As an aside, David still remembers where he was when he understood pointers, sitting

with his TF in the back of Eliot dining hall. So don’t worry if none of this makes sense

just yet (though I hope these notes are helpful)!

• Let’s watch Pointer Fun with Binky11.

Binky is a clay … figure that talks about this code with a narrator, using a "magic

wand of dereferencing" to show what we just explained, in a different way.

There are three basic rules:

"Pointer and pointee are separate - don’t forget to set up the pointee." (Don’t

forget to malloc something for y !)

"Dereference a pointer to access its pointee." (Use *x to go to the address

stored in x !)

"Assignment (=) between pointers makes them point to the same pointee." (x

= y sets them to the same address.)

11 http://www.cs.stanford.edu/cslibrary/PointerFunCBig.avi

http://www.cs.stanford.edu/cslibrary/PointerFunCBig.avi
http://www.cs.stanford.edu/cslibrary/PointerFunCBig.avi

	Week 4, continued
	Table of Contents
	Files, Headers, and Hex
	Structs
	Quick Reminder
	GDB
	Strings
	Memory Allocation

