
1

Week 8, continued

This is CS50. Harvard University. Fall 2014.

Cheng Gong

Table of Contents

Superglobals and Cookies ... 1

Introduction to SQL .. 7

Creating a Table .. 17

MVC with Texting ... 24

Registering .. 27

Texting ... 34

Superglobals and Cookies

• The web server in Problem Set 6 demonstrates writing software that knows how to

take HTTP requests from a browser (or a human with a program called telnet), and

respond to those requests with an HTML, JPG, or PHP file.

• But a web server shouldn’t return a raw PHP file, but interpret it first.

It notices that it ends in .php , so it interprets it line by line, using a pre-existing

program, PHP (which happens to have the same name as the language it interprets).

• We took care of that part for you in Problem Set 6, so all you had to do was support

static content, among other things.

• In Problem Set 7, we’ll start to write the PHP code that gets interpreted, talking to the

back-end database that stores our information.

• Remember from last time that we have these superglobals:

$_COOKIE

$_GET

$_POST

$_SERVER

$_SESSION

Week 8, continued

2

…

• On Monday we used $_GET , which had all the parameters we put in the query string.

When we implemented our own version of Google, the URL had a question mark and

then q= (like https://www.google.com/search?q=cats). The question mark

indicated the start of the query string q=cats , and $_GET would automatically have

a key named q with the value cats .

• All of these superglobals are associative arrays, or hash tables that store keys and

values.

• In Problem Set 5, the hash table or trie you implemented was really an associative

array where the keys were associated with values of true or false, whether the word

was in the dictionary or not.

• But we can associate more interesting values with keys, and return arbitrary strings,

which is what $_GET and these other variables allow us to do.

• $_POST stores forms sent by the POST method, and files are actually stored in a

variable not listed, $_FILES 1.

• $_SERVER 2 gives you details about the server, which we won’t go into detail about.

• $_COOKIE and $_SESSION are what we need to implement things like a simple

shopping cart.

• Last time we had an example of a counter.php file that counted how many times

we visited the page:

• We can open Chrome’s Developer Tools, but first clear the cache:

1 http://php.net/manual/en/reserved.variables.files.php
2 http://php.net/manual/en/reserved.variables.server.php

https://www.google.com/search?q=cats
http://php.net/manual/en/reserved.variables.files.php
http://php.net/manual/en/reserved.variables.server.php
http://php.net/manual/en/reserved.variables.files.php
http://php.net/manual/en/reserved.variables.server.php

Week 8, continued

3

Week 8, continued

4

• We’ll do this for debugging purposes, getting rid of cookies, a piece of data that a

server asks to put on your computer, to remember who you are.

• After you log into a website like Gmail or Facebook, the server remembers that you

are logged in, even though you’re not typing in your username and password at every

Week 8, continued

5

page. Cookies are the answer. They are like a digital handstamp that you might get at

an amusement park or club, that indicates you’ve already showed your ID, and have

been identified already.

• We can reload counter.php and view the request as we’ve done before (clicking

view source next to Request Headers to see the raw request):

In Problem Set 6 we’ve familiarized ourselves with lines like GET /counter.php

HTTP/1.1 , so not much new here.

• But if we scroll down to Response Headers and click view source, we see:

Week 8, continued

6

Set-Cookie is what puts a piece of information on your computer. It’s an HTTP

header that tells your browser, IE or Chrome or Firefox, to store stuff on the user’s

hard drive or memory. In this case, we’re storing a key called PHPSESSID with a

value of 0vlk8t… , a really long pseudorandom string (actually a number encoded

with letters) that identifies the user’s session. And path=/ just means that this

cookie should be associated with everything on this website, not just the current

page.

This is just like the website server writing 0vlk8t… on your hand at an

amusement park or club, to identify you later.

• Notice that the server doesn’t store our username or (god forbid) our password, but

rather a pseudorandom piece of information so our login info isn’t saved there, to

prevent other people from finding it. The server, on the other hand, remembers any

personal information that should be associated with 0vlk8t… .

• So every time we reload the page, the server knows how many times we’ve visited.

After we reload the page, we look at Request Headers again, and we see this time:

The browser presents our virtual handstamp with that line, Cookie:

PHPSESSID=0vlk8t… , and the server realizes that we are that user, and brings

up all the information that should be associated with that user.

• In the source code of counter.php3, we indeed store a $counter variable in

$_SESSION :

3 http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/counter.php

http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/counter.php
http://cdn.cs50.net/2014/fall/lectures/8/m/src8m/counter.php

Week 8, continued

7

<?php

 // enable sessions

 session_start();

 // check counter

 if (isset($_SESSION["counter"]))

 {

 $counter = $_SESSION["counter"];

 }

 else

 {

 $counter = 0;

 }

 // increment counter

 $_SESSION["counter"] = $counter + 1;

?>

In line 17 we store the previous value of the counter plus 1.

• So that’s how $_SESSION works under the hood. Modern websites today might

set half a dozen cookies or more, and troublingly, if a central party is serving

advertisements embedded in multiple websites, then the cookies (which are per

domain) will allow that central party to track who you are and what you’re visiting.

• If you’re super paranoid (like Cheng, who doesn’t even have a Facebook) and turn

off your cookies, lots of websites will stop working, because many websites require

cookies for you to log in, and have no other way of remembering who you are.

• So let’s take for granted that we can remember information like that.

Introduction to SQL

• In the Frosh IMs example from last time, all we did was email the information that a

user submitted, like the name, gender, and dorm, to the proctor (or John Harvard, as

we were testing).

• We can do that better, by using SQL, Structure Query Language, read as "sequel."

This is a language we use to talk to a database, which is like an Excel (or Numbers or

Week 8, continued

8

Google Sheets) file. Those files are essentially relational databases, which have rows

and columns that store information. SQL, however, is special because we can execute

queries, commands to sort or remove or look for data, programmatically.

• SQL has fundamental statements like:

DELETE

INSERT

UPDATE

SELECT

…

DELETE removes data, INSERT adds rows, UPDATE changes rows, and

SELECT gets rows.

• SQL operates entirely on rows, so SELECT for example would return a result set, or

an array of rows.

• We can communicate with our database in a Terminal window:

• But that’s not particularly fun. A graphical user interface, GUI, is much better:

Week 8, continued

9

• The tool we recommend and have preinstalled in the appliance is phpMyAdmin. The

"php" in the name refers to the language it was written in, and the tool administers a

MySQL server.

• On the left we see a list of databases that we have in the appliance (or a server on the

Internet, in the case of many final projects), and here we only have the pset7 database.

• On the top there are a bunch of tabs, Databases, SQL, Status, Users, etc.

• In Problem Set 7 we’ll be making a website called C$50 Finance, which lets you "buy"

and "sell" stocks. It’ll get prices from Yahoo! Finance which has a free service where

we can pass in a stock ticker, like GOOG for Google, Inc., and it will give you back the

current stock price for Google. So we’ll use that to allow users to pretend to buy and

sell stocks with virtual money.

• The first screen that users will see is this:

Week 8, continued

10

And your first challenge will be to implement the backend database for the users'

names, passwords, and eventually the stocks they own, among many other things.

• Let’s look more closely at databases. In the appliance, we can go to localhost/

phpmyadmin/ , and click the + next to pset7 :

We see that the pset7 database has a link to New , for creating a new table, but

also users , a table we’ve already created.

Week 8, continued

11

• A table is like an individual spreadsheet with its own rows and columns, represented

by the tabs along the bottom of the screen in Excel or Numbers files. A database is just

made up of one or more of these tables.

• If we click on users and scroll down a bit, this is what that table looks like:

• We see that there are columns id , username , and hash , and in Problem Set 7

we give you this information to start you off. Notice that there are 6 usernames, each

with unique IDs from 1 to 6. To the right are hashes, or basically encrypted passwords.

(The hashes and names are from Problem Set 2’s Hacker Edition.) And to the left are

links to GUI operations, like editing, copying, or deleting rows.

• We can now click on the SQL tab and try out queries. (Remember that phpmyadmin is

just a tool for us to poke around, but we’ll really program all of these queries into our

.php files when we want to use them.) Let’s take a look at that tab:

Week 8, continued

12

• The big text box is where we can input a query, and let’s try to run this:

SELECT is a keyword that means we’re getting something from the table, and that

something is * , which means all the columns, FROM the table called `users` .

Week 8, continued

13

(The backtick, ` , character is used to surround the name of a table, not single or

double quotes, and it’s probably on the top left of your keyboard to the left of the

1 key.)

• We can scroll down and click GO, and we’ll see this:

This is the same thing as before, since our query was to get everything.

• Now let’s try to run this:

Notice that we use double quotes around strings as usual.

• And when we run it we get a warning, to be sure we really wanted to DELETE

something:

Week 8, continued

14

• We click OK, but when we go back to the users table, it looks exactly the same:

• Turns out we made a couple of mistakes. The column is named username , not name ,

and her username is stored as zamyla with a lowercase, not uppercase, "z."

• So let’s try this again:

Week 8, continued

15

• And now we actually see a confirmation page that tells us we completed this query

successfully:

• To be sure, we can go back to our table and see all the rows:

• We can also register Gabe. We can do something like this:

Week 8, continued

16

The syntax is bit more cryptic now, but we are telling the database that we want to

INSERT INTO the table called `users` a row with the columns (username,

hash) specified with the VALUES('gabe', 'TODO') , with the values we want

in the same order of the columns we listed. (Even though David used single quotes,

which do work, probably best to use double quotes, as in C.) We don’t really care

what the id column is, and we don’t know what the hash is going to be, so we’ll

leave it as TODO for now.

• We click GO, and we get:

It looks like we successfully inserted Gabe into the table.

• And when we go back to the table, we see that his id is actually:

Week 8, continued

17

This is a built-in feature of the database, where id can automatically be

incremented and assigned, even though we didn’t specify it. (When the table was

created, we specified that id would be a special field that does this.)

• As an aside, Facebook has an API where you can get all sorts of data about users.

Mark Zuckerberg’s account had an ID of 3, with users 1 and 2 being test accounts. And

all of us have numbers much larger. (In fact, they’ve moved from using an int to the

equivalent of a long long so they can eventually accomodate more users.)

• So that’s just an introduction to the syntax of SQL, with which we can do many more

powerful things.

Creating a Table

• In Problem Set 7 we’ll allow you to make a number of design decisions, one of which

is the types of data to use.

• Just like in C, there are datatypes in SQL including:

CHAR

VARCHAR

INT

BIGINT

DECIMAL

DATETIME

…

• Let’s go to the lectures database that David has, and create a new table called

users with 3 columns:

Week 8, continued

18

• Once we click GO, we get to a screen that looks like:

• Here we can name each column:

Week 8, continued

19

• And when we click on Type, we get a menu of the whole list of types possible:

But we’ll stick to INT for the id column.

• We can scroll right and see more fields, which we’ll leave blank since none of them

are applicable:

Week 8, continued

20

• When we get to Attributes, we have a design decision to make, where we can choose

UNSIGNED for the id column:

This specifies that the int has to be non-negative, 0 or higher.

• If we keep scrolling right, we see a few more columns:

Week 8, continued

21

We don’t check Null because we want every user to have an id .

• If we click on Index, we see these options:

Another feature of a database server is that it can optimize the way it structures

the database, so operations are faster. In Problem Set 5 you had to make sure

your hash table or trie was fast, but here we can use what other people have built.

And here, by selecting PRIMARY in the Index column for id , we are telling the

database server that id will be the primary way of identifying users in the database.

We could use their username , but that’s a string, and less efficient to sort and

access than an int .

• The next field, A_I, just means AUTO_INCREMENT, which we want to check so the

id column is automatically updated:

Week 8, continued

22

• And if we go further to the right to the last few columns, not many interesting things

are there:

• So we can go back to the beginning, and take a look at the types for username and

hash :

Week 8, continued

23

We probably don’t want username to be an INT , so we should choose a STRING

… but there are many choices if we scroll a bit down:

CHAR is not a single character, but a particular number of characters that we’d

have to specify in the next column, Length/Values. We could decide to make all

usernames have a length of 8, for example. But some people might want a longer

or shorter one, so we can choose the VARCHAR type, which allows us to have

a variable number of characters. If we select that, then the value in the Length/

Values column will be the maximum number that field can be. TEXT would also

Week 8, continued

24

work, but it’s meant for strings with a maximum length of 65,535 characters, and

probably too much for a simple username.

We’ll set hash to also VARCHAR , but not focus on its length for now.

• We’ll scroll a bit to the right, and make a stop at the Index column:

We can’t make two indexes both PRIMARY , but we should choose to make

username UNIQUE , since we don’t want multiple people singing up with the same

username. When that’s selected, the database will help us enforce this by not letting

us insert rows with the same username as another row.

INDEX tells the database to create an index of this field, to increase the speed of

our searches on this field.

FULLTEXT tells the database we might run searches on the full text of this field,

which might be paragraphs or longer pieces of text.

• Another design decision you might have is the storage engine you use, but we’ll come

back to that someday.

MVC with Texting

• Let’s open this week’s source code 4 in our Terminal:

4 http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/

http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/
http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/

Week 8, continued

25

jharvard@appliance (~/vhosts/localhost): ls

includes public templates

Notice that we have three directories, where we left off on Monday. public

will contain all the files that we want users to actually visit. templates will

have reusable components, like the header and footer of a webpage. This is

the equivalent of the "View" part of MVC, where we put a lot of the aesthetics.

includes has the following:

jharvard@appliance (~/vhosts/localhost/includes): ls

config.php constants.php functions.php

• Let’s take a quick look at config.php 5:

<?php

 // display errors, warnings, and notices

 ini_set("display_errors", true);

 error_reporting(E_ALL);

 // requirements

 require("constants.php");

 require("functions.php");

 // enable sessions

 session_start();

?>

Like the #include statement in C, the require statements in PHP allow us to

essentially copy and paste code from those files. And session_start() means

that we’ll be keeping a session on this website, with cookies being sent back and

forth.

• We can also open constants.php 6:

5 http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/includes/config.php
6 http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/includes/constants.php

http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/includes/config.php
http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/includes/constants.php
http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/includes/config.php
http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/includes/constants.php

Week 8, continued

26

<?php

 // your database's name

 define("DATABASE", "lecture");

 // your database's password

 define("PASSWORD", "crimson");

 // your database's server

 define("SERVER", "localhost");

 // your database's username

 define("USERNAME", "jharvard");

?>

Again like C, PHP supports constants, even though the syntax is a bit different.

• And in the file functions.php7, there are lots of functions, but let’s look at

function query :

 /**

 * Executes SQL statement, possibly with parameters, returning

 * an array of all rows in result set or false on (non-fatal) error.

 */

 function query(/* $sql [, ...] */)

 {

 // SQL statement

 $sql = func_get_arg(0);

 // parameters, if any

 $parameters = array_slice(func_get_args(), 1);

 ...

Earlier we used phpMyAdmin to set up and experiment with our database, but to

actually use it in code we’ll start calling this query function.

7 http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/includes/functions.php

http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/includes/functions.php
http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/includes/functions.php

Week 8, continued

27

• The file also contains function redirect that we can call to send the user to

another URL:

 /**

 * Redirects user to destination, which can be

 * a URL or a relative path on the local host.

 *

 * Because this function outputs an HTTP header, it

 * must be called before caller outputs any HTML.

 */

 function redirect($destination)

 {

 ...

• render renders a template, but more about these functions in Problem Set 7’s

walkthroughs.

Registering

• Let’s look now at index.php 8 in the public directory:

<?php

 // configuration

 require("../includes/config.php");

 // render portfolio

 render("form.php");

?>

Here we require config.php which is in the includes directory that is in

our parent directory, .. .

• Then we just render form.php 9, which is in our templates directory:

8 http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/public/index.php
9 http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/templates/form.php

http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/public/index.php
http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/templates/form.php
http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/public/index.php
http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/templates/form.php

Week 8, continued

28

<form action="register.php" method="post">

 <input name="name" placeholder="Name" type="text"/>

 <input name="number" placeholder="Phone Number" type="text"/>

 <input type="submit" value="Register"/>

</form>

So this form is using the post method to hide the information from the URL, and

submit it to a file called register.php .

• Putting it all together, http://localhost/index.php will end up looking like this:

• If we fill out the form and click Register, we’ll get this because register.php is not

yet implemented:

• So let’s create register.php in our public directory with gedit , and start with

this:

http://localhost/index.php

Week 8, continued

29

<?php

 if (empty($_POST["name"]))

 {

 apologize("Missing name");

 }

 else if (empty($_POST["number"]))

 {

 apologize("Missing number");

 }

?>

If either of the fields are empty , we call the apologize function (that we wrote in

functions.php , not a built-in PHP function) to tell the user which one is missing.

• Now if we register, we get a blank screen, because the form was complete and there

were no errors:

• Let’s go back and purposefully leave both fields blank. Hmm, the same thing:

Week 8, continued

30

• Turns out we forgot the most important part, requiring our config.php that sets up

our constants and functions. So let’s add that:

<?php

 require("../includes/config.php");

 if (empty($_POST["name"]))

 {

 apologize("Missing name");

 }

 else if (empty($_POST["number"]))

 {

 apologize("Missing number");

 }

?>

• Now if we reload the page, we get an error as we expected:

Week 8, continued

31

What we see is the apologize function printing out whatever we gave it as an

argument.

• Now we should do something when the user provides us the information correctly. Let’s

go back to phpMyAdmin and quickly create a users table:

We’ll make name at most 64 characters, and since we’ll support US numbers for

now, we’ll make that fixed at 10 characters long.

• Then we’ll make the id field PRIMARY and automatically increment it, but leave the

others blank for now:

• After we click Save towards the bottom of that page, we can go back to our users

table and click the Structure tab:

Week 8, continued

32

So we see the types of each field, along with other information.

• Now we can try to run a query on that table in our register.php source code:

<?php

 require("../includes/config.php");

 if (empty($_POST["name"]))

 {

 apologize("Missing name");

 }

 else if (empty($_POST["number"]))

 {

 apologize("Missing number");

 }

 query("INSERT INTO users (name, number) (?, ?)", $_POST["name"],

 $_POST["number"]);

 render("success.php");

?>

In the query we don’t have to have backticks around users since it’s relatively safe.

In the values for name and number we use ̀ ?`s, question marks, as placeholders,

and add the variables afterwards.

Week 8, continued

33

And if all goes well, we’ll just render a template called success.php which will

just be:

<h1>Success!!!!</h1>

• So let’s go to register.php in our browser, and when we click Register:

Dammit, we have an error in our SQL syntax. Right, we needed VALUES in our

query:

query("INSERT INTO users (name, number) VALUES(?, ?)", $_POST["name"],

 $_POST["number"]);

• Now we can reload, and see "Success!!!!":

• And if we go back to phpMyAdmin and look at our table, we indeed see our information

saved:

Week 8, continued

34

Texting

• We’ll try to text David now, programmatically.

• Let’s write a quick program called text 10:

#!/usr/bin/env php

<?php

 require("includes/config.php");

 $rows = query("SELECT * FROM users");

 foreach ($rows as $row)

 {

 printf("Name is %s, and number is %s\n", $row["name"],

 $row["number"]);

 }

?>

10 http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/bin/text

http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/bin/text
http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/bin/text

Week 8, continued

35

We start by including our config.php file. Then we select all the rows in the

users table, saving that in a variable called $rows , and for each of them, we

print the name and number stored in the $row .

• Then we should chmod a+x text in our Terminal so we can execute it, and now

it looks like it’s working:

jharvard@appliance (~/vhosts/localhost): chmod a+x text

jharvard@appliance (~/vhosts/localhost): ./text

Name is David, and number is 6175551212

• Notice that we’ve written a script in PHP, that we can run in our command line, that

has access to our entire database because of config.php . We can quickly use

register.php to add Rob, and see that we can get both numbers back:

jharvard@appliance (~/vhosts/localhost): ./text

Name is David, and number is 6175551212

Name is Rob, and number is 6175551212

• As an aside, the last time David tried to give this demo two years ago, he used the

entire CS50 database, but a bug in his loop caused him to send one email the first

iteration, two emails the next, and so on. Anyways these emails were actually texts that

read "Why aren’t you in class?" (#davidhumor), and David got back lots of apologetic

emails about how they were sorry for missing lecture "just this once" … anyways, this

year we’ll try this with just David’s phone.

• In functions.php 11 we have the following function that we’ve written in advance:

11 http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/includes/functions.php

http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/includes/functions.php
http://cdn.cs50.net/2014/fall/lectures/8/w/src8w/includes/functions.php

Week 8, continued

36

 /**

 * Sends a text. Returns true on success, else false.

 */

 function text($number, $carrier, $message)

 {

 // determine address

 switch ($carrier)

 {

 case "AT&T":

 $address = "{$number}@txt.att.net";

 break;

 case "Verizon":

 $address = "{$number}@vtext.com";

 break;

 }

 if (!isset($address))

 {

 return false;

 }

 // instantiate mailer

 $mail = new PHPMailer();

 // use SMTP

 $mail->IsSMTP();

 $mail->Host = "smtp.fas.harvard.edu";

 $mail->Port = 587;

 $mail->SMTPSecure = "tls";

 // set From:

 $mail->SetFrom("jharvard@cs50.harvard.edu");

 // set To:

 $mail->AddAddress($address);

 // set body

 $mail->Body = $message;

 // send text

 if ($mail->Send())

 {

 return true;

 }

 else

 {

 return false;

 }

 }

Week 8, continued

37

So this function takes three arguments, and we see that a switch statement in

PHP can take strings. It turns out, that with AT&T and Verizon, you can send an

email to addresses like {$number}@vtext.com , and it will go to that number as

a text message.

• We’ll need to quickly add a field:

• We’ll call this carrier as a VARCHAR and save it:

• Then we can click Edit for David and manually change his carrier to Verizon :

Week 8, continued

38

• And now we can change our text script to print out the carrier :

#!/usr/bin/env php

<?php

 require("includes/config.php");

 $rows = query("SELECT * FROM users");

 foreach ($rows as $row)

 {

 printf("Name is %s, and number is %s, carrier is %s\n",

 $row["name"], $row["number"], $row["carrier"]);

 }

?>

• And that works fine:

jharvard@appliance (~/vhosts/localhost): ./text

Name is David, and number is 6175551212, carrier is Verizon

• Now inside the foreach loop we’ll not only printf the information, but send an

actual message to the number:

Week 8, continued

39

#!/usr/bin/env php

<?php

 require("includes/config.php");

 $rows = query("SELECT * FROM users");

 foreach ($rows as $row)

 {

 printf("Name is %s, and number is %s, carrier is %s\n",

 $row["name"], $row["number"], $row["carrier"]);

 text($row["number"], $row["carrier"], "Don't screw up this year");

 }

?>

We’ll call the text function, and pass in the three arguments, $number ,

$carrier , and $message .

• So let’s run it:

jharvard@appliance (~/vhosts/localhost): ./text

Name is David, and number is 6175551212, carrier is Verizon

PHP Notice: Undefined variable: mail in /home/jharvard/vhosts/localhost/

includes/functions.php on line 166

Notice: Undefined variable: mail in /home/jharvard/vhosts/localhost/

includes/functions.php on line 166

PHP Fatal error: Call to a member function IsSMTP() on a non-object in /

home/jharvard/vhosts/localhost/includes/functions.php on line 166

Fatal error: Call to a member function IsSMTP() on a non-object in /home/

jharvard/vhosts/localhost/includes/functions.php on line 166

Turns out we were missing a line that includes the PHPMailer library.

• We make a few more fixes to various files, but then this error appeared:

jharvard@appliance (~/vhosts/localhost): ./text

Name is David, and number is 6175551212, carrier is Verizon

SMTP Error: The following recipients failed: 6175551212@vtext.com

Week 8, continued

40

• After a bit more debugging, we give up on this example, to be fixed Monday. :(

	Week 8, continued
	Table of Contents
	Superglobals and Cookies
	Introduction to SQL
	Creating a Table
	MVC with Texting
	Registering
	Texting

