This is CS50.
Harvard University Fall 2014

Quiz 1

Answer Key

Answers other than the below may be possible.

Stack Attack.

0. bool push (int datum)
{
if (stack.size == CAPACITY)
{
return false;
}
stack.data[stack.size] = datum;
stack.size++;
return true;

1. bool pop(int* location)
{
if (stack.size == 0)
{
return false;
}
*location = stack.datal[stack.size - 1];
stack.size--;
return true;

0<8

This is CS50.
Harvard University Fall 2014

Hash this out.

2. Because the hash function bases its output only on the first letter of its input, it will tend to output
some values more frequently than others, since some letters are more common at the start of

English words than others. Some of the hash table's chains will thus grow longer (and slower to
traverse) than others.

3. unsigned int size (void)
{
unsigned int size = 0;
for (int 1 = 0; i < 26; 1i++)
{
node* ptr = tablel[i];
while (ptr != NULL)
{
size++;
ptr = ptr->next;
}
}

return size;

Trie this.
4, unsigned int size (node* n)
{
unsigned int counter = 0;
if (n == NULL)

{
return 0;
}

if (n->word)
counter++;
for (int 1 = 0; 1 < 26; 1i++)
counter += size(n->children[i]);

}

return counter;

1<8

Grammatically Correct.

This is CS50.
Harvard University Fall 2014

start-1line

GET /register.php?name=David&dorm=Matthews+Hall HTTP/1.1

request-1line

GET /register.php?name=David&dorm=Matthews+Hall HTTP/1.1

method

GET

request-target

/register.php?name=David&dorm=Matthews+Hall

HTTP-version

HTTP/1.1

absolute-path

/register.php

query

name=David&dorm=Matthews+Hall

header-field

Host: localhost

field-name

Host

field-value

localhost

start-1line

HTTP/1.1 200 OK

status-1line

HTTP/1.1 200 OK

HTTP-version HTTP/1.1
status-code 200
reason-phrase OK

header-field

Content-Type: application/json

field-name

Content-Type

field-value

application/json

message-body

{"symbol":"FREE", "name" :"FreeSeas Inc.","price":0.15}

2<8

This is CS50.
Harvard University Fall 2014

Better GET permission.

7.

8.

9.

10.

200, because index.html is world-readable (and its ancestors are world-executable).
200, because index.html is world-readable (and its ancestors are world-executable).
404, because quote.html doesn't exist.

403, because img isn't world-executable.

Delete cookies?!

11.

12.

13.

A cookie is a key-value pair sent via a Set-Cookie HTTP header from a web server to web
browser to be stored in RAM or on disk by the latter. On subsequent HTTP requests, the web
browser is expected to present the cookie to the web server via a Cookie HTTP header so that
the web server knows that it's the same user again.

PHPSESSID is a cookie whose value is a string that uniquely identifies a user's browser. After
receipt of that cookie, a browser, by nature of HTTP, will include that cookie's value in all
subsequent requests to the website that set it. That value maps, server-side, to a file (or database
row) that contains the contents of $ SESSION, a PHP superglobal in which a website can store
key-value pairs.

If the advertiser sets a cookie when responding to a browser's initial request for the image, the
browser will send that same cookie with every subsequent request for the image (unless the
browser has disabled "third-party" cookies). If the browser also reveals the URL of the page that's
been visited (as via a Referer HTTP header or via some query string that the advertiser includes
in the tag), the advertiser will know on which page the tag is embedded and, thus, which page the
user has visited. If a user visits multiple sites that the advertiser has pixeled, the advertiser will
receive the same cookie from the user across those sites and thus know which sites the user has
visited.

boOM, DOM DOM DOM.

14.

typedef struct node

{
// a pointer to this node's first child, if any; this node's
// other children are accessible via that first child's nextSibling
struct node* childNodes;

// pointer to this node's next sibling, if any; this node is thus
// effectively the start of a linked list of siblings
struct node* nextSibling;

// node's name, if any, is just a string
char* nodeName;

}

node;

3<8

This is CS50.
Harvard University Fall 2014

Frosh IMs.

15.

16.

GET /register.php?name=David&dorm=Matthews+Hall HTTP/1.1

$ (function () {
S ("#registration") .submit (function (eventObject) {
if ($("#name").val() == "" || S ("#dorm").val() == "")
{
return false;
}
return true;
})
})

Having said that...

17. Having said that, JavaScript (and thus client-side validation) can be disabled by users (and users
could even send HTTP manually via curl, telnet, or the like), so implementing server-side
validation is also still necessary.

18. Having said that, because PHP is an interpreted (and not compiled) language, PHP programs tend
to run more slowly than equivalent C programs.

19. Having said that, because an array (sorted or not) is of fixed size (at least in C), growing or
shrinking it is more expensive time-wise than growing or shrinking a linked list.

Why bother?

20. Even though lookups in a hash table are still in O(n) asymptotically, they take wall-clock time on
the order of n/k, where k is the number of chains, assuming the chains are of uniform length
(i.e., n/k). Lookups in a linked list, meanwhile, take wall-clock time on the order of n (i.e., more
time), since a linked list is like one chain of length n.

21. External stylesheets allow CSS properties to be shared across multiple pages. Not only can the

stylesheets thus be modified centrally (without having to edit HTML files individually), they can be
cached by browsers, which expedites subsequent page loads.

World Wide Wait.

22.

The browser first looks up the IP address of bankofamerica.com by checking its own cache and
then asking the local operating system as needed, which in turn contacts a DNS server as needed.
The browser then sends an HTTP request, the headers and message body of which are encrypted
with HTTPS (i.e., SSL or TLS), to port 443 of that address using TCP, which ensures any dropped
data will be re-sent. The network's default router (i.e., gateway) then relays the request to its
destination. Upon receipt of the request, the server responds with the HTML that composes the
server's home page.

4<8

This is CS50.
Harvard University Fall 2014

Design Decisions.

23.

24,

25.

26.

27.

You should use a CHAR when you know in advance that all values in some column will be of (no
more than) a fixed length, since the database will be able to search over those values more
efficiently if it knows their length. You should use a VARCHAR when the values' lengths will vary.

You should use DECIMAL instead of FLOAT when you need a specific number of digits to the right
of a decimal point (as is particularly appropriate when storing monetary values), without any risk
of floating-point imprecision (as is possible with FLOAT).

You should use GET when you want to transmit state (e.g., query strings) via a URL so that the
state is bookmarkable or reachable via a clickable link. You should use POST when you do not
want state to appear in a URL (and thus a web browser's history or, typically, a web server's logs).

You should use NULL when you want to assign to a pointer a known sentinel value. You should use
"\0"' to terminate a string. Whereas NULL is a pointer (of type void*), '\0"' isa char.

You should use a CSV file when you want to store small datasets in a (typically read-only) format
that can be opened in spreadsheet software. You should use a SQL table when you want to store
larger datasets in a format that lends itself to efficient searches (via SELECT) and modifications
(via DELETE, INSERT, and UPDATE).

5<8

This is CS50.
Harvard University Fall 2014

Hi, sQL.
28.
Name Type Length Index
INT v PRIMARY v
email VARCHAR v 255 UNIQUE v
name VARCHAR v 255 v
house VARCHAR v 255 v
29. Suppose that Skroob doesn't yet own any shares of FreeSeas Inc. Because the code's SQL

statements are not wrapped in TRANSACTION, they will not be executed atomically (i.e., back to
back without interruption). If two web browsers, A and B, try talking to the web server
simultaneously (and the web server handles those requests with multiple threads), it's possible
that A's SELECT will execute in one thread, followed immediately by B's SELECT in another
thread, the result of which is that both threads will see that Skroob doesn't yet own any shares of
FreeSeas Inc. If A's thread then proceeds with an INSERT, the state of the database will change
unbeknownst to B's thread, but B will still try (and fail) to proceed with an INSERT (based on the
database's previous state) rather than an UPDATE. To fix the problem, the code's statements can
be wrapped with BEGIN TRANSACTION and COMMIT or the three statements can be combined
into one "upsert" using ON DUPLICATE KEY.

Supercookie!

30.

31.

32.

Because Verizon is injecting the same header into mobile devices' HTTP requests, that value can
be used by web servers receiving that header to track the user across pages, just like a cookie. It
simply happens to be a "hand stamp" from Verizon instead of from the servers themselves.

Because Verizon's header is injected into an HTTP request after the request leaves a mobile
device, it cannot be blocked or deleted by the owner of the mobile device. And so the owner

cannot even opt out of being tracked.

No. Because HTTPS requests' HTTP headers are encrypted, Verizon cannot inject its header
(without knowing the encryption key being used by web browsers and web servers).

6<8

This is CS50.
Harvard University Fall 2014

Full Circle.

33. The implementation will likely segfault when the queue is of size 1 and its sole node is dequeued.
Because the code does not check whether tail equals head (as would be the case when the
queue's size is 1), it ultimately frees that sole node without setting tail to NULL, as is appropriate
for a queue of size 0. The addition of a condition, below, fixes the bug.

bool dequeue (int* location)
{
if (location == NULL)
{
return false;
}
if (tail == NULL)
{
return false;
}
node* head = tail->next;
*location = head->datum;
if (tail !'= head)
{
tail->next = head->next;
}
else
{
tail = NULL;
}
free (head) ;
return true;

34. Dbool enqgqueue (int datum)
{
node* n = malloc(sizeof (node));
if (n == NULL)
{
return false;
}
n->datum = datum;
if (tail == NULL)
{
tail = n;
tail->next = n;
}
else
{
n->next = tail->next;
tail->next = n;
tail = n;
}

return true;

7<8

