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THE MATH BEHIND THE NUMBER

Electromagnetic radiation is made up of photons, elementary particles that exhibit properties not only
of particles but also waves. Acting as a wave, a photon travels through space at the speed of light with
a specific frequency that defines its energy and, therefore, its classification along the electromagnetic
spectrum. Our eyes can only detect a very specific frequency range that makes up the visible spectrum
(recall Roy G. Biv!). On the other hand, a photon acts as a particle such that the number of photons
determines the intensity of light of a particular object emitting or reflecting those photons. Twice as
many photons will appear twice as bright, or in photographic terms, “one stop” brighter.

Shutter speed is somewhat easy to understand in these terms. Doubling the time the shutter is open
(say, from 1

2 second to 1 second) doubles the number of photons that sensor can collect and conse-
quently doubles the intensity of detected light. The F-number (also known as f-stop or aperture value)
does not quite follow this pattern of doubling; it is a factor of about 1.4, rather than 2, that differentiates
stops in the F-number.

A camera lens contains a diaphragm that restricts the amount of light reaching the film plane in a
manner similar to the iris of the human eye. Whereas the hole that lets in light in the middle of the
eyes’ iris is called the pupil, the hole in the middle of a diaphragm of a lens is its aperture. Because
an aperture is defined as a hole for light to pass through in an optical system, the pupil could also be
called an aperture!
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If the area of an aperture is doubled, the number of photons that can reach the sensor through the lens
is also doubled. The F-number of a lens is the ratio of its focal length divided by the diameter of the
aperture (Figure 1). Since the F-number is a ratio involving the diameter, and not the area, we lose the
ability to nicely double or halve a number to calculate a stop.

Notice that, counterintuitively, higher F-numbers indicate a smaller aperture and therefore an increasing
restriction on the light traveling through the lens. To convince yourself of this, imagine what would
happen to the F-number if the aperture diameter decreases while the focal length remains the same or
how it changes when the focal length increases while the diameter is held constant. Also realize that
Figure 1, above, is an oversimplification of lenses. Almost all modern lenses are made up of more than
one glass element, and it is not necessarily the very front element that contains the smallest diameter.
An element inside of the lens may be a little bit smaller, for example, but this does not affect the focal
length.

Although doubling the area of the aperture doubles the amount of light traveling through the lens, the
F-number ratio is defined in terms of its area. The question therefore arises: what, precisely, constitutes
a one stop difference in F-number?

To answer this question, let’s assume we have two separate lenses that have maximum apertures with
areas A1 and A2, as shown below.

A1 A2

A1 is twice the area of A2. For simplicity, let’s assume that the diameter of A1 (which we’ll call d1) and
its focal length (f ) are both 1, so the F-number of this lens would be 1. Let us further assume that the
focal length of the lenses are the same. To figure out the F-number of A2, we need to determine how
much smaller the diameter is compared to that of A1. Let’s do some math!
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This means, for A2 to be half the area of A1, the diameter d2 must be
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therefore computed as follows:
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Which is approximately 0.7. This demonstrates our contention that halving the area does not also halve
its diameter. Let’s continue with the calculations.

F-number of A2 =
f
D

=
f

d2
=

1(√
2

2

) =
2√
2

=
2√
2

(√
2√
2

)
=
√

2 ≈ 1.4

The F-number for A2, then, is f/1.4!

As an exercise, try doing the same thing with A2 and a third circle, A3, whose area is half of that of
A2. If you keep applying this math for halved areas, you get the list of F-numbers that are one stop
apart:

F-numbers: f/1.0, f/1.4, f/2.0, f/2.8, f/4.0, f/5.6, f/8, f/11, f/16, f/22, etc.

These numbers can be difficult to memorize; one approximation is to remember the first two F-numbers,
1.0 and 1.4, and double each to obtain the subsequent two F-numbers. You then double those to receive
the following two, and so on. Like so:

F-numbers:

2x

f/1.0, f/1

2x

.4, f/2

2x

.0, f/2.

2x

8, f/4

2x

.0, f/5.

2x

6, f/8

2x

.0, f/1

2x

1, f/16, f/22, etc.

Please note, however, that this trick breaks down after about f/32 or so. The most accurate method
for determining the sequence of F-numbers is to begin at f/1.0 and continuously multiply by

√
2, but

this approximation is fine for nearly all circumstances since the typical range for F-numbers is below
f/32.


