
1
11/27/2013

Setting up your Mirror API Glass Project for CS50

By Christopher Bartholomew, Teaching Fellow

cbartholomew@g.harvard.edu

Contents
Section I: Creating a Project in the Google Cloud Console ... 2

Section II: Setting up the Mirror API with your project .. 3

Section III: Setting up App Registration and Open Authentication ... 4

Section IV: Using the Glass Developer Playground ... 6

Section V: Pro Tips .. 7

mailto:cbartholomew@g.harvard.edu

2
11/27/2013

Section I: Creating a Project in the Google Cloud Console

1. The credentials you are going to be using are the following:

Important - DO NOT SHARE WITH ANYONE ELSE UNLESS THEY ARE YOUR

PARTNER OR YOU’VE ASKED ME FIRST

Username: glassware50@gmail.com

Password: iwearglass

2. Head over to https://cloud.google.com and login with the given credentials above.

3. In the top left hand corner, you may see the last project that was logged in using this

account, if this is the case, back out of it by clicking the project name.

4. Otherwise, you’ll be brought to the main project menu. Here, you’ll create and define

your new project by selecting “Create Project”.

5. Name the project using the following convention: LastnameFirstname or if you are with

a partner do LastnameAndLastnameOfPartner. The maximum character limit is 30.

Also, keep the Project ID default. Afterwards, select “Create”. Note: You might have to

hit “Refresh” if your project doesn’t show up immediately.

https://cloud.google.com/

3
11/27/2013

Section II: Setting up the Mirror API with your project

Note: If you have not completed Section I, please do so before continuing.

1. From the cloud console, click into your project that you’ve just created.

2. On the left hand navigation menu, select “APIs & auth” then “APIs”. On the right hand

side of the screen, a list of APIs will be displayed. Scroll down until you see “Google

Mirror API”, and then toggle the switch on the left hand side of it to “On”. Note: you

might have to refresh the page for the toggle to show up as “On”. This is because

the API is then moved to the top of the screen.

4
11/27/2013

Section III: Setting up App Registration and Open Authentication

Note: This step is extremely important if you want to interact with the playground and

other Mirror API functionality.

1. If you haven’t entered nor created your project yet, do so now (Section I & II). Once

inside of your project console, go to the left hand navigation menu and select “APIs &

auth”. Then select “Registered Apps”. If you do not have any existing applications,

you’ll be prompted to create a new one. Provide any name of your choosing, and ensure

that “Web Application” is checked. Then select the “Register” button below.

2.

3. Once your application is registered, you’ll be sent over to menu which has a few menu

options. For now, we’ll only need to focus on setting up the OAuth 2.0 Client ID. select

“OAuth 2.0 Client ID” menu. Note: If you are not sure what OAuth is, please refer to

the following wiki article: http://en.wikipedia.org/wiki/OAuth.

http://en.wikipedia.org/wiki/OAuth

5
11/27/2013

4. Next, you’ll be showed a client id and a client secret. You’ll need this later to interact

with the API from your actual service. Copy the Client ID and put it somewhere

easily accessible to you in the future, perhaps in a code file within your

development environment. As for your client secret, you can ignore this for now.

5. Next, you’ll need to update the “Web Origin” and “Redirect URI”. When you’ve

published your service, you’ll need to change this; however, for now – Enter

“http://localhost” for both the “Web Origin” and the “Redirect URI”. Afterwards, select

the “Generate” button. After the page has been generated, select the “+” (plus) to add a

new “Web Origin”, you’ll need to do this in order to use the developer playground. In the

new “Web Origin” text field, enter the following end point: https://mirror-api-

playground.appspot.com and then select the “Generate” button once again. The

output should resemble the following:

http://localhost/
https://mirror-api-playground.appspot.com/
https://mirror-api-playground.appspot.com/

6
11/27/2013

6. If you later want to customize your own “Consent Screen” i.e. when a user selects to

subscribe to your service, you can select “Update”. For now, however, we’ve completed

the OAuth 2.0 Setup, and we can now use the Playground.

Section IV: Using the Glass Developer Playground

Note: The developer playground will allow you to do many things such as insert, update,

and remove timeline cards. Furthermore, it will even allow you to use a “Proxy” so that

you can test your Glass service and how it interacts with Glass itself. Ensure you have

completed Sections I-III before attempting to use, otherwise, this will not work.

1. If you haven’t done so already, make sure you copy your “Client ID” (not client secret)

that you’ve created in your previous project. Afterwards, head over to the Glass’s

developer playground: https://developers.google.com/glass/tools-downloads/playground

2. On the playground page, there is a text box where it will ask you to input your “Client ID”

paste your “Client ID” into the text field and select “Authorize”. Once you’ve selected

“Authorize”, a consent window will appear asking you consent to the specific “Scope”

that was provided. In this case, the “Scope”

(https://developers.google.com/accounts/docs/OAuth2Login#authenticationuriparameter

s) is “View and manage your Glass timeline”. Here, you’ll just want to select the

“Accept” button.

3. Once you’ve accepted the consent, you’re ready to use the playground. Here, you’ll be

able to formulate and test inserting, updating, and reviewing items on your Glass’s

timeline. You’ll also be able to select a variety of different templates that will

accommodate the various styles. Because your service will be using the same “Client

ID” as what you’ve just entered, anything that is done from your service will be sent to

your glass and viewable here in the timeline. This is all due to everything being bounded

to that “Client ID”.

https://developers.google.com/glass/tools-downloads/playground
https://developers.google.com/accounts/docs/OAuth2Login#authenticationuriparameters
https://developers.google.com/accounts/docs/OAuth2Login#authenticationuriparameters

7
11/27/2013

4. When you have published your service to an external resource (other than localhost),

and you want extend functionality such as allowing “Subscriptions” then you’ll need to

pre-append you’re your subscription URLS with the Google Proxy (This is of course

not needed if you are already using a server that has an SSL Certificate, i.e.

HTTPS) https://developers.google.com/glass/tools-downloads/subscription-proxy

Section V: Pro Tips

1. Make a default Chrome Profile for Glassware50. To do this, Open Chrome, go to the

URL, and type: chrome://settings/. Afterwards, scroll down to the “Users” section and

select “Add new user…” Select a theme and name. Then sign into your new Chrome

profile. This way, you’ll be able to swap out of Chrome Profiles without using Incognito

Mode. Makes development really easy.

2. Log all incoming JSON requests to your service handlers inside of the database.

Using the Authorization Token and User ID as additional fields. For example, in the

blogger Glassware that I created (https://myglassapps.com/#blogger), I log all incoming

requests so that I can debug why something isn’t working correctly. Meaning, I can take

that same JSON payload, dump it into some javascript page, and send the request to my

“localhost”. I can also send the JSON dump directly to my service locally and test it

there. There database table that I created for logging requests is the following:

3. The table where you are storing Access Tokens is very important for using OAuth,

it should resemble the following structure:

https://developers.google.com/glass/tools-downloads/subscription-proxy
chrome://settings/
https://myglassapps.com/#blogger

8
11/27/2013

Note: when any future request comes in – you should check this table to see if an

access token exists and is valid. If for some reason the user is – re-subscribing to

your service, you should remove the users’ old token and create a new one.

4. If all else fails, read, read, and read

https://developers.google.com/glass/develop/mirror/index – or contact me 

cbartholomew@g.harvard.edu

https://developers.google.com/glass/develop/mirror/index
mailto:cbartholomew@g.harvard.edu

