/1

Setting up your Mirror APl Glass Project for CS50

By Christopher Bartholomew, Teaching Fellow

cbartholomew@agq.harvard.edu

Contents
Section I: Creating a Project in the Google Cloud Console...........ccceeceeviiieceieeececeeeee e

Section IlI: Setting up the Mirror APl With YOUF PrOJECT........ceevvieiieeeieceee e
Section IlI: Setting up App Registration and Open Authenticationcccccovevevevienceecenesceereseenenn
Section IV: Using the Glass Developer Playground ...

SECHON VI PIO TIPS oottt ettt sttt ettt b e bt b et et et et e st e bt s bt e b e b et et et enneseebeebenbensenee

11/27/2013

mailto:cbartholomew@g.harvard.edu

Section I: Creating a Project in the Google Cloud Console

1. The credentials you are going to be using are the following:

Important - DO NOT SHARE WITH ANYONE ELSE UNLESS THEY ARE YOUR
PARTNER OR YOU’VE ASKED ME FIRST

Username: glassware50@gmail.com

Password: iwearglass

2.

3.

Head over to https://cloud.google.com and login with the given credentials above.

In the top left hand corner, you may see the last project that was logged in using this
account, if this is the case, back out of it by clicking the project name.

GO\.-gl(: Cloud Console

I £ Glass50Test HAME

Overview BigQuery .

Otherwise, you’ll be brought to the main project menu. Here, you'll create and define
your new project by selecting “Create Project”.

GO\,-gl(: Cloud Console

Projects CREATE PROJECT

Billing

Account settings PROJECT NAME
API Project
Glassh0Test

Name the project using the following convention: LastnameFirstname or if you are with
a partner do LastnameAndLastnameOfPartner. The maximum character limit is 30.
Also, keep the Project ID default. Afterwards, select “Create”. Note: You might have to
hit “Refresh” if your project doesn’t show up immediately.

11/27/2013

https://cloud.google.com/

New Project

Project name BartholomewChristopher

Project 1D analog-bay-412 C

Section Il: Setting up the Mirror API with your project

Note: If you have not completed Section I, please do so before continuing.

1. From the cloud console, click into your project that you’ve just created.

CREATE PROJECT

PROJECT NAME

APl Project

BartholomewChristopher

GlassalTest

2. On the left hand navigation menu, select “APIs & auth” then “APIs”. On the right hand
side of the screen, a list of APIs will be displayed. Scroll down until you see “Google
Mirror API”, and then toggle the switch on the left hand side of it to “On”. Note: you
might have to refresh the page for the toggle to show up as “On”. This is because
the APl is then moved to the top of the screen.

11/27/2013

< BartholomewChris... NAME STATUS

Overview

APls

Registered apps
Consent screen

Notification endpoints

BigQuery API el

Google Cloud SQL

Google Cloud Storage

Google Cloud Storage JSON AP| o

| Google Mirror API

Section lll: Setting up App Registration and Open Authentication

Note: This step is extremely important if you want to interact with the playground and
other Mirror API functionality.

1.

If you haven’t entered nor created your project yet, do so now (Section | & II). Once
inside of your project console, go to the left hand navigation menu and select “APIs &
auth”. Then select “Registered Apps”. If you do not have any existing applications,
you'll be prompted to create a new one. Provide any name of your choosing, and ensure
that “Web Application” is checked. Then select the “Register” button below.

Register new application

You need to register your application to get the necessary credentials to call a Google APL

Name My App
Platform o Web Application I

Android

i0s
Chrome

Mative Windows Mobile, Bladkbemry, desktop, devices, and more

Once your application is registered, you’ll be sent over to menu which has a few menu
options. For now, we’ll only need to focus on setting up the OAuth 2.0 Client ID. select
“OAuth 2.0 Client ID” menu. Note: If you are not sure what OAuth is, please refer to
the following wiki article: http://en.wikipedia.org/wiki/OAuth.

11/27/2013

http://en.wikipedia.org/wiki/OAuth

My App

Web Application

Use the controls below to set up your application’s authorization credentials. What you select depends on the type of data your application needs to access

v QOAuth 2.0 Client ID
Access user data via a consent screen

¢ Certificate
Access application-specific data that comes from a server

v Server Key
Access data that comes from a server, and that is not associated with an account

v Browser Key
Access data that comes from a browser. and that is not associated with an account

4. Next, you'll be showed a client id and a client secret. You’ll need this later to interact
with the API from your actual service. Copy the Client ID and put it somewhere
easily accessible to you in the future, perhaps in a code file within your
development environment. As for your client secret, you can ignore this for now.

» OAuth 2.0 Client 1D
Access user data via a consent screen

Download JS0ON

CLIENT ID

2063903404032 -c8713nkb06almdham3gggl eoSgpbadgvi. apps.googlenusercontent . com

CLIENT SECRET
EEM xS tH-gflKIMptnLrmDijc

5. Next, you'll need to update the “Web Origin” and “Redirect URI”. When you’ve
published your service, you'll need to change this; however, for now — Enter
“http://localhost” for both the “Web Origin” and the “Redirect URI”. Afterwards, select
the “Generate” button. After the page has been generated, select the “+” (plus) to add a
new “Web Origin”, you'll need to do this in order to use the developer playground. In the
new “Web Origin”text field, enter the following end point: https://mirror-api-
playground.appspot.com and then select the “Generate” button once again. The
output should resemble the following:

11/27/2013

http://localhost/
https://mirror-api-playground.appspot.com/
https://mirror-api-playground.appspot.com/

COMNSENT SCREEN

Update

WEB ORIGIN
http:/flocalhost — +

https-//mirror-api-playground. appspot.com — +

http:/llocalhost — +

6. If you later want to customize your own “Consent Screen” i.e. when a user selects to
subscribe to your service, you can select “Update”. For now, however, we’ve completed
the OAuth 2.0 Setup, and we can now use the Playground.

| REDIRECT URI

Section IV: Using the Glass Developer Playground

Note: The developer playground will allow you to do many things such as insert, update,
and remove timeline cards. Furthermore, it will even allow you to use a “Proxy” so that
you can test your Glass service and how it interacts with Glass itself. Ensure you have
completed Sections I-lll before attempting to use, otherwise, this will not work.

1. If you haven’t done so already, make sure you copy your “Client ID” (not client secret)
that you’ve created in your previous project. Afterwards, head over to the Glass’s
developer playground: https://developers.google.com/glass/tools-downloads/playground

2. On the playground page, there is a text box where it will ask you to input your “Client ID”
paste your “Client ID” into the text field and select “Authorize”. Once you've selected
“Authorize”, a consent window will appear asking you consent to the specific “Scope”
that was provided. In this case, the “Scope”
(https://developers.google.com/accounts/docs/OAuth2L ogin#authenticationuriparameter
s) is “View and manage your Glass timeline”. Here, you'll just want to select the
“Accept” button.

3. Once you’ve accepted the consent, you're ready to use the playground. Here, you’ll be
able to formulate and test inserting, updating, and reviewing items on your Glass'’s
timeline. You'll also be able to select a variety of different templates that will
accommodate the various styles. Because your service will be using the same “Client
ID” as what you've just entered, anything that is done from your service will be sent to
your glass and viewable here in the timeline. This is all due to everything being bounded
to that “Client ID”.

11/27/2013

https://developers.google.com/glass/tools-downloads/playground
https://developers.google.com/accounts/docs/OAuth2Login#authenticationuriparameters
https://developers.google.com/accounts/docs/OAuth2Login#authenticationuriparameters

I'm Testing Glass
Developer Tools for my
TEST Project, HI Mom!

in T minute

4. When you have published your service to an external resource (other than localhost),

and you want extend functionality such as allowing “Subscriptions” then you'll need to
pre-append you’re your subscription URLS with the Google Proxy (This is of course
not needed if you are already using a server that has an SSL Certificate, i.e.
HTTPS) https://developers.google.com/glass/tools-downloads/subscription-proxy

Section V: Pro Tips

286

1. Make a default Chrome Profile for Glassware50. To do this, Open Chrome, go to the

URL, and type: chrome://settings/. Afterwards, scroll down to the “Users” section and
select “Add new user...” Select a theme and name. Then sign into your new Chrome
profile. This way, you'll be able to swap out of Chrome Profiles without using Incognito
Mode. Makes development really easy.

Log all incoming JSON requests to your service handlers inside of the database.
Using the Authorization Token and User ID as additional fields. For example, in the
blogger Glassware that | created (https://myglassapps.com/#blogger), | log all incoming
requests so that | can debug why something isn’t working correctly. Meaning, | can take
that same JSON payload, dump it into some javascript page, and send the request to my
“localhost”. | can also send the JSON dump directly to my service locally and test it
there. There database table that | created for logging requests is the following:

REQUEST_ID USER_ID CREATED_DATE PAYLOAD
745630 2a-8068-4c0b-269a-cd20fS0eddea 105439867526 169935261 5/28/2013 9:49:08 AM JUser Action: REPLY |Payload: { “collectionag (...}

257

74563023-8c68-4c0b-369a-cd2bfS0e8dea 105429867526 168935251 5/28/2013 9:43:16 AM [User Action: CUSTOM|Payload: { “collection& {...)

268

7456302a-8068-4c0b-a69a-cd 2bf50e8dea 105429867526 168935261 5/28/2013 10:04:41 AM |User Action: SHARE [Payload: { “collectiongaq (...}

269

7456302a-8c68-4c0b-269a-cd2bf50e8dea 105499867526169935261 5/28/2013 10:05:35 AM User Action: REPLY |Payload: { “collection&q (...}

270

7456302a-8c68-4c0b-a69a-cd 2bf50e8dea 105429867526 168935261 5/28/2013 10:12:34 AM [User Action: REPLY |Payload: { “collection®q (...)

271

7456302a-8c68-4c0b-a69a-cd2bf50e8dea 105499867526169935261 5/28/2013 10:12:35 AM try02b86268-c279-4489-9291-7cef8116435b

272

7456302a-8c68-4c0b-269a-cd2bf50e8dea 105499867526169935261 5/28/2013 10:14:15 AM IUser Action: SHARE|Payload: { "collection®g {...)

3. The table where you are storing Access Tokens is very important for using OAuth,

it should resemble the following structure:

11/27/2013

https://developers.google.com/glass/tools-downloads/subscription-proxy
chrome://settings/
https://myglassapps.com/#blogger

REQUEST_ID unigueidentifier
USER._ID nvarchar
ACCESS_TOKEM wvarchar
ACCESS_TOKEN_EXPIRATION_UTC datetime
ACCESS_TOKEN_ISSUE_LTC datetime
REFRESH_TOKEN wvarchar
CALLBACK varchar
HOST_MNAME wvarchar
AUTH_CODE wvarchar

16
255
MAX
8

8

MAX

0

0

25

23

False
True
True
True
True
True
True
True

True

False
False
False
False
False
False
False
False

False

False
False
False
False
False
False
False
False

False

I!IIIIIIIIIIIIIIIIIIIIIE:IIIIIIIEEHI:E!IIEE!IIEE!IE!IEIIEE:!IHIIIIIIIIIIIIEEEIII

EEFO X
EEFO X
EHO X
EEFO X
EHG X
EEFO X
EHO X
EEFO X
EFO X

1/biLq1TMSy 2QZtTL-SLrfSYp48ZwniTWMWea-bagbS7E |hitps://myglassapps. com fmain. ashx P3NW85HG343 4f2VMAGTUrYXMXcgpTIxg 1 zg—ch 0sBfinHZlqceaDn_gy0
(.

Note: when any future request comes in —you should check this table to see if an
access token exists and is valid. If for some reason the user is —re-subscribing to

your service, you should remove the users’ old token and create a new one.

4, If all else fails, read, read, and read
https://developers.google.com/glass/develop/mirror/index — or contact me ©

cbartholomew@q.harvard.edu

11/27/2013

https://developers.google.com/glass/develop/mirror/index
mailto:cbartholomew@g.harvard.edu

