
1

Week 1, continued

This is CS50. Harvard University. Fall 2015.

Anna Whitney

Table of Contents

1. Imprecision ... 1

2. Announcements ... 2

3. C .. 2

4. Types ... 3

4.1. Conditions .. 4

4.2. Loops ... 6

4.3. Integer Overflow .. 7

4.4. Loops, continued ... 8

4.5. Variables .. 8

4.6. Functions and Arguments .. 9

5. Problem Set 1 .. 11

1. Imprecision

• Last week, we saw in imprecision.c1 that 1.0/10.0 does not in fact equal 0.1

as expected. Well, actually it does equal 0.1 , of course - but the computer gets it a

little bit wrong.

• Computers only have a finite amount of memory, so they have to pick and choose what

values they’re going to support.

• If we only have 8 bits, we can only represent 256 values (and since we use one of those

values for zero, the greatest number we can represent is 255).

• Floating point values are stored a little differently, but the computer still only uses

typically either 32 or 64 bits to store a floating point number—so it can’t possibly

represent infinitely many values.

1 http://cdn.cs50.net/2015/fall/lectures/1/f/src1f/imprecision.c

http://cdn.cs50.net/2015/fall/lectures/1/f/src1f/imprecision.c
http://cdn.cs50.net/2015/fall/lectures/1/f/src1f/imprecision.c

Week 1, continued

2

• When we get these inaccuracies after many decimal places, we’re running up against

the hardware limitations of the computer.

• Paying attention to how numbers are stored in your code can be critical—this clip from

Modern Marvels2 shows how disasters can result when numerical imprecision isn’t

taken into account in high-precision systems.

2. Announcements

• Supersections this weekend; they will be filmed and streamed live for those unable

to attend.

• Problem Set 1 is live on the course website, and due next Thursday.

• Office hours will take place Monday through Thursday this week.

3. C

• Let’s return to our canonical program from last time:

#include <stdio.h>

int main(void)

{

 printf("hello, world"\n);

}

• Recall that #include <stdio.h> allows us to use the functions of the standard I/O

library, written by other programmers in the past, and declared in a file called stdio.h

elsewhere in our system.

• We introduced main last week as the analog of Scratch’s [when [green flag]

clicked] block. In C and several other languages, your first function must be called

main . We’ll explain later what int and void are doing here.

• printf is a function that prints out a formatted string. It takes one or more arguments

(also known as parameters or simply inputs). The first is a string - a word or phrase or

even a whole essay - which you usually want to terminate with a \n to ensure that

the output ends with a newline. Subsequent arguments tell printf what values to

2 http://youtu.be/7yFh7v6XMTo?t=4m1s

http://youtu.be/7yFh7v6XMTo?t=4m1s
http://youtu.be/7yFh7v6XMTo?t=4m1s
http://youtu.be/7yFh7v6XMTo?t=4m1s

Week 1, continued

3

fill in for any format strings (such as %f for a floating-point number) that you included

in the first string argument.

\n in the above is what’s known as an escape character - rather than being

interpreted literally as a backslash and the letter n, it tells the compiler to do

something else. In this case, that "something else" is starting a new line.

• Semicolons indicate the end of statements, and curly braces delineate blocks of code

(like the structures of control puzzle pieces in Scratch).

• Volunteer Kopal acts as the printf function, accepting input from David (acting as

the hello program that calls printf) written on a piece of paper and writing the

input given on the touchscreen, simulating the effect of printf .

• Another volunteer, Ife, represents the GetString function. Kopal, as printf ,

writes "State your name" on the touchscreen. Ife then gets a name from the audience

and brings it back. David stores the returned name, "Nik", in a variable called s (by

writing it on a sheet of paper labeled s).

• David now gives Kopal/ printf a sheet of paper that says hello, %s\n and the

sheet of paper containing the value of s . He fills in the name stored in the variable s ,

"Nik", in place of the placeholder %s .

• This same model of message passing underlies all the code we write, as outputs of

functions are passed as inputs to other functions and so on.

4. Types

• We’ve been talking mostly about strings thus far, but values in C can have a few other

types:

char , a single character (like a or 7 or %), which takes up one byte, or 8 bits;

uses a printf format code of %c

float , a floating-point value (a number with a decimal point, like 10.0 or

3.14159), which takes up 32 bits (four bytes); %f

double , a floating-point number that takes up twice as much space as a float

(so 64 bits/8 bytes); also %f

int , an integer, also 32 bits/4 bytes, meaning that the largest integer we can

represent is roughly 4 billion; %i or %d

longlong , a 64 bit integer (which can represent much larger values!); '%lld`

Week 1, continued

4

• And from the CS50 Library, found in cs50.h :

bool , true or false

string , a sequence of characters

• We can also use various escape sequences in printf format strings:

\n for a newline

\t for a tab character

\" to include a double-quote in the middle of a printf format string (since a bare

double-quote would make the compiler think it had reached the end of the string!)

• In the CS50 Library, we provide functions like GetString , GetInt , GetFloat ,

GetLongLong and so on, that let you get input of a specific type from the user. These

functions include error checking to prevent the user from providing invalid input.

4.1. Conditions

• Conditions have the following structure:

if (condition)

{

 // do this

}

• The // in line 3 marks a comment, English words directed at yourself or other readers

of your code. Lines starting with // (or multi-line blocks beginning with /* and ending

with */) tell the compiler not to look for actual instructions here.

• There can also be two exclusive branches:

if (condition)

{

 // do this

}

else

{

 // do that

}

• Or three:

Week 1, continued

5

if (condition)

{

 // do this

}

else if (condition)

{

 // do that

}

else

{

 // do this other thing

}

• Boolean expressions (the conditions inside the conditional) can be combined with &&

as "and", and || as "or":

if (condition && condition)

{

 // do this

}

if (condition || condition)

{

 // do this

}

• Switches express the same thing as certain if / else if /…/ else constructs,

but can be more elegant and involve fewer curly braces. They provide no additional

functionality that can’t be done with regular conditionals, but can sometimes be

stylistically preferable.

• You can use a switch whenever all the conditions of your conditional would be of the

form expression == value for the same expression but different values.

Week 1, continued

6

switch (expression)

{

 case i:

 // do this

 break;

 case j:

 // do that

 break;

 default:

 // do this other thing

 break;

}

4.2. Loops

• One type of loop in C is the for loop, which has the following basic structure:

for (initializations; condition; updates)

{

 // do this again and again

}

• A specific example:

for (int i = 0; i < 50; i++)

{

 printf("%i\n", i);

}

In this case, int i = 0 is the initialization of the loop, telling it to start counting

at zero by creating a variable called i and assigning it the value 0 .

i < 50 is the condition of the loop: immediately after the initialization, and at the

start of every step of the loop thereafter, the condition is checked, and the code in

the body of the loop will only be executed if the condition evaluates to true .

i++ is the update of the loop, which will be executed after the body of the loop

to move to the next step.

Week 1, continued

7

We’ve put printf("%i\n", i); in the body of the loop, so this code will print

the numbers from 0 to 49 (not 50 , because when we update to i = 50 , the

condition i < 50 evaluates to false and the body of the loop is not executed).

The curly braces are not syntactically required if the body of the loop is only one

line, but we will always use them in class (and we request that you do too!) for clarity

and to prevent mistakes.

4.3. Integer Overflow

• Just as floating point values have limits on their precision, integers have limits on the

size of values they can represent.

• For a 32-bit integer, the maximum value is roughly 4 billion.

• When a binary number overflows, we go from a value like this (255 stored in 8 bits):

 128 64 32 16 8 4 2 1

 1 1 1 1 1 1 1 1

To a value like this:

?? 128 64 32 16 8 4 2 1

1 0 0 0 0 0 0 0 0

But this is still only an 8-bit value, so there’s nowhere to put the leading 1, and instead

we get:

 128 64 32 16 8 4 2 1

 0 0 0 0 0 0 0 0

• We can see the effects of these limits on integers in various software:

In the video game Lego Star Wars, the number of coins you can collect is capped at

4 billion exactly - from which we can infer that the original developer for this game

used a 32-bit integer to store the user’s number of coins.

In the original Civilization game, each world leader was assigned an aggressiveness

score, and Gandhi was given the lowest score of 1. If a nation transitioned to

democracy in the game, the leader’s aggressiveness score was decreased by

Week 1, continued

8

2. However, the aggressiveness scores were stored in unsigned 8-bit integers

(meaning they couldn’t be negative) - so decreasing Gandhi’s aggressiveness score

to -1 had the effect of looping around to 255 (so Gandhi became the most aggressive

leader in the game!)

The Boeing 787 would lose all power after 248 days of continuous operation due

to an integer overflow in the control units of its power generators (the workaround

solution is to reboot the plane more often than that!)

4.4. Loops, continued

• Slightly different from a for loop, we have a while loop, that merely depends upon

a single condition which is checked before every iteration of the loop:

while (condition)

{

 // do this again and again

}

• Similarly, in a do-while loop, the condition is checked after every iteration of the

loop (as indicated by the syntax):

do

{

 // do this again and again

}

while (condition);

4.5. Variables

• As we’ve discussed, a variable in C has a particular type, which must be declared when

the variable is created. Here, the first line creates a new variable of the type int , and

the second assigns a value of 0 to it. The declaration of the variable and assigning

it a value can happen as far away from each other in code as you like, but for clarity

it’s best to keep them close together.

int counter;

counter = 0;

Week 1, continued

9

• A more succinct way to write the above code:

int counter = 0;

4.6. Functions and Arguments

• Functions are followed by parentheses, which contain any arguments that are being

passed to the function:

string name = GetString();

printf("hello, %s\n", name);

• In function-0.c 3, we show how to define your own function:

#include <cs50.h>

#include <stdio.h>

// prototype

void PrintName(string name);

int main(void)

{

 printf("Your name: ");

 string s = GetString();

 PrintName(s);

}

/**

 * Says hello to someone by name.

 */

void PrintName(string name)

{

 printf("hello, %s\n", name);

}

• Separating out this logic in PrintName is a form of abstraction, hiding the low-level

implementation details of how we print the name.

• Similarly, in function-1.c 4, we can use the return value of a function:

3 http://cdn.cs50.net/2015/fall/lectures/1/f/src1f/function-0.c
4 http://cdn.cs50.net/2015/fall/lectures/1/f/src1f/function-1.c

http://cdn.cs50.net/2015/fall/lectures/1/f/src1f/function-0.c
http://cdn.cs50.net/2015/fall/lectures/1/f/src1f/function-1.c
http://cdn.cs50.net/2015/fall/lectures/1/f/src1f/function-0.c
http://cdn.cs50.net/2015/fall/lectures/1/f/src1f/function-1.c

Week 1, continued

10

#include <cs50.h>

#include <stdio.h>

// prototype

int GetPositiveInt();

int main(void)

{

 int n = GetPositiveInt();

 printf("Thanks for the %i!\n", n);

}

/**

 * Gets a positive integer from a user.

 */

int GetPositiveInt(void)

{

 int n;

 do

 {

 printf("Please give me a positive int: ");

 n = GetInt();

 }

 while (n < 1);

 return n;

}

• The int in int GetPositiveInt(void) , as well as the void in void

PrintName(string name) , indicates the return type of the function.

• PrintName doesn’t return anything (it just prints a name to the screen, which is a

side effect), so its return type is void .

• GetPositiveInt returns an int - the first positive integer value the user enters -

using the return command. Any non-void function must have a return value (if you

don’t have a return command, your return value is assumed to be 0 , for reasons

we’ll discuss later in the course).

• In return.c 5, we have another example of returning a value from a function:

5 http://cdn.cs50.net/2015/fall/lectures/1/f/src1f/return.c

http://cdn.cs50.net/2015/fall/lectures/1/f/src1f/return.c
http://cdn.cs50.net/2015/fall/lectures/1/f/src1f/return.c

Week 1, continued

11

#include <stdio.h>

// function prototype

int cube(int a);

int main(void)

{

 int x = 2;

 printf("x is now %i\n", x);

 printf("Cubing...\n");

 x = cube(x);

 printf("Cubed!\n");

 printf("x is now %i\n", x);

}

/**

 * Cubes argument.

*/

int cube(int n)

{

 return n * n * n;

}

• In this case, this function both accepts an input argument (an int , which we’re calling

n) and outputs, or returns, a value.

5. Problem Set 1

• On this problem set, you’ll implement in C an ASCII version of Mario’s pyramid (or a

more challenging version in the hacker edition!)

• You’ll also implement a greedy algorithm for determining the coins necessary when

giving change, and investigate rates of water flow.

	Week 1, continued
	Table of Contents
	1. Imprecision
	2. Announcements
	3. C
	4. Types
	4.1. Conditions
	4.2. Loops
	4.3. Integer Overflow
	4.4. Loops, continued
	4.5. Variables
	4.6. Functions and Arguments

	5. Problem Set 1

