
1

Week 4

This is CS50. Harvard University. Fall 2015.

Anna Whitney

Table of Contents

1. Volkswagen and Trust in Software .. 1

2. Recursion ... 2

3. Sigma ... 4

4. Swap .. 8

5. Debugging with CS50 IDE ... 11

6. Pointers .. 15

1. Volkswagen and Trust in Software

• Volkswagen is in trouble for faking its emission tests using software.

• "A sophisticated software algorithm on certain Volkswagen vehicles detects when the

car is undergoing official emissions testing and turns full emissions controls on only

during the test."

• "The software produced by Volkswagen is a 'defeat device' as defined by the Clean

Air Act."

• The software for faking emissions was discovered in an independent investigation at

WVU.

• Based on various inputs (position of steering wheel, vehicle speed, duration of engine’s

operation, barometric pressure), the car’s Electronic Control Module (ECM) would track

whether the car was undergoing the standard emissions testing procedure.

• Although the actual VW source code has not been released, the algorithm essentially

boils down to this:

if being tested

 turn full emissions controls on

Week 4

2

else

 don't

• Perhaps more concretely:

if wheels are turning but steering wheel isn't

 turn full emissions controls on

else

 don't

• This video1 describes the actual consequences this software has on the function of

the cars.

• So how do we know that all the software we use is only doing what we think it is?

We can look at the source code of, e.g., the CS50 Library to make sure that the

CS50 staff have not inserted code we don’t want to run.

But even clang could have a "Trojan horse" built in that could add code to your

programs when they’re being compiled.

Even if we look at the source code for clang , we can’t guarantee it doesn’t have

any malicious code, because compilers are themselves compiled with older versions

of themselves!

Ken Thompson gave a talk2 about trust in software that essentially comes down

to the fact that we can’t trust software - the best we can do is to trust the people

who wrote it.

• To lighten the mood, watch this adorable Volkswagen ad3 from the 2011 Superbowl

that almost makes them likeable again.

2. Recursion

• Recall our pseudocode from back at the very beginning to find Mike Smith in the phone

book:

1 https://www.youtube.com/watch?v=CQ4irwe3ZDk
2 http://cdn.cs50.net/2015/fall/lectures/4/m/p761-thompson.pdf
3 https://www.youtube.com/watch?v=R55e-uHQna0

https://www.youtube.com/watch?v=CQ4irwe3ZDk
http://cdn.cs50.net/2015/fall/lectures/4/m/p761-thompson.pdf
https://www.youtube.com/watch?v=R55e-uHQna0
https://www.youtube.com/watch?v=CQ4irwe3ZDk
http://cdn.cs50.net/2015/fall/lectures/4/m/p761-thompson.pdf
https://www.youtube.com/watch?v=R55e-uHQna0

Week 4

3

pick up phone book

open to middle of phone book

look at names

if "Smith" is among names

 call Mike

else if "Smith" is earlier in book

 open to middle of left half of book

 go to line 3

else if "Smith" is later in book

 open to middle of right half of book

 go to line 3

else

 give up

• Note that lines 8 and 11 have this go to construct, which creates a loop (C does

actually have a go to statement, but its use is strongly discouraged because it is

very easy to get wrong, makes it harder to reason about your program’s behavior, and

can easily be abused).

• Instead, we could write this program as follows:

pick up phone book

open to middle of phone book

look at names

if "Smith" is among names

 call Mike

else if "Smith" is earlier in book

 search for Mike in left half of book

else if "Smith" is later in book

 search for Mike in right half of book

else

 give up

• Now instead of inducing a loop with go to , lines 7 and 9 recursively call the entire

algorithm, telling us to start back at the beginning - but with a smaller problem!

Eventually we’ll reach the base case, where we have just one page left and either

"Smith" is there and we call Mike, or he’s not and we give up.

• Recall our algorithm for merge sort, which is also recursive:

On input of n elements

Week 4

4

 if n < 2

 return

 else

 sort left half of elements

 sort right half of elements

 merge sorted halves

• An algorithm is recursive if it calls itself.

• More formally, in C, a function foo() is recursive if somewhere in the code of foo() ,

there is a call to the function foo() itself.

If all foo() ever does is call itself, we have a problem! But as long as the problem

gets smaller and we have a base case, this is just fine and will end.

3. Sigma

• Let’s take a look at sigma-0.c 4:

4 http://cdn.cs50.net/2015/fall/lectures/4/m/src4m/sigma-0.c

http://cdn.cs50.net/2015/fall/lectures/4/m/src4m/sigma-0.c
http://cdn.cs50.net/2015/fall/lectures/4/m/src4m/sigma-0.c

Week 4

5

#include <cs50.h>

#include <stdio.h>

// prototype

int sigma(int);

int main(void)

{

 // ask user for a positive int

 int n;

 do

 {

 printf("Positive integer please: ");

 n = GetInt();

 }

 while (n < 1);

 // compute sum of 1 through n

 int answer = sigma(n);

 // report answer

 printf("%i\n", answer);

}

/**

 * Returns sum of 1 through m; returns 0 if m is not positive.

 */

int sigma(int m)

{

 // avoid risk of infinite loop

 if (m < 1)

 {

 return 0;

 }

 // return sum of 1 through m

 int sum = 0;

 for (int i = 1; i <= m; i++)

 {

 sum += i;

 }

 return sum;

}

Week 4

6

• The program adds the numbers 1 through n . Notice that there is a prototype on line

5, and all that does is say that there will be a function later on in the program, named

sigma , that takes an int in the parentheses, and returns an int .

We need this so the compiler knows this function will be defined below, because it

compiles the code in order.

• Now let’s look at main , where we ask the user for an integer until we get a positive

one, using a do-while loop as we have before. Then on line 19 we create a variable

called answer , and store the return value of the sigma function to it, after we pass

it the n from the user.

• Before moving on, let’s run it:

jharvard@ide50:~/workspace/src4m $./sigma-0

Positive integer please: 2

3

And 2 + 1 is indeed 3.

• What if we give it 3 ? 3 + 2 + 1 = 6.

jharvard@ide50:~/workspace/src4m $./sigma-0

Positive integer please: 3

6

• And bigger numbers should give us bigger sums:

jharvard@ide50:~/workspace/src4m $./sigma-0

Positive integer please: 50

1275

• So how does the sigma function actually work?

Week 4

7

int sigma(int m)

{

 // return sum of 1 through m

 int sum = 0;

 for (int i = 1; i <= m; i++)

 {

 sum += i;

 }

 return sum;

}

• Remember that we declare sum outside the loop, so that we can access it outside of

the for loop, and also so that we don’t reset it to 0 every pass of the loop.

• Variables are generally scoped to the curly braces that encompass them, so we need

to put them outside the curly braces of the for loop in order to return it after.

• Finally, in main we simply call the sigma function and print the value it returns. In

this case, sigma is written with an iterative approach where it does the same thing,

over and over again.

• But we can implement it differently, as in sigma-1.c 5:

int sigma(int m)

{

 if (m <= 0)

 return 0;

 else

 return (m + sigma(m - 1));

}

• Here we start by returning 0 if m # 0 , which is the base case. This is equivalent to

knowing what to do when we got down to one page of the phone book in our previous

example.

• The beauty is in the else condition: the sum of the numbers from 1 to m is the same

as the sum of m , and the sum of the numbers from 1 to m - 1 . So we can follow

this logic, passing each smaller value back to sigma , from sigma(n) to sigma(n

- 1) to sigma(n - 2) until we get to sigma(0) , which is added back up to all

those other questions.

5 http://cdn.cs50.net/2015/fall/lectures/4/m/src4m/sigma-1.c

http://cdn.cs50.net/2015/fall/lectures/4/m/src4m/sigma-1.c
http://cdn.cs50.net/2015/fall/lectures/4/m/src4m/sigma-1.c

Week 4

8

At each step, we keep around the last value while we make the next function call,

and hold on to it until we get back the result from that function call.

We "stack" these results in order, so when we get back each call, we can rewind

in time and add them up in the correct order (the order doesn’t matter for addition,

but it might for other recursive algorithms).

• Volunteer Sam comes up to Google "recursion", which results in Google prompting us,

"Did you mean: recursion".

For entertainment’s sake: try Googling anagram, askew, or do a barrel roll.

Clearly Google has a few if conditions under the hood to check if the user typed

any of these search terms!

4. Swap

• Before we move on, a demonstration from a volunteer from the audience, Lauren. We

have some orange juice and milk, each in a glass, and to swap them, Lauren needed

a third cup, using it to store the orange juice. Then she poured the milk into the cup

originally containing the orange juice, and finally the orange juice into the cup that

originally had the milk.

We can think of the third cup as a temporary variable to store the value of the

orange juice cup or the milk cup. Here’s the corresponding C code:

void swap(int a, int b)

{

 int tmp = a;

 a = b;

 b = tmp;

}

Lauren also tries this without a third cup using oil and water, taking advantage of the

fact that they don’t mix. We can actually swap two values without using a temporary

variable, using the magic of bitwise operators:

Week 4

9

void swap(int a, int b)

{

 a = a ^ b;

 b = a ^ b;

 a = a ^ b;

}

^ is XOR, or exclusive OR. Try working through this by hand with a couple of 8-

bit values (it works with any bitstring, but it’ll take a while by hand!), and verify that

it does in fact switch the values.

This sort of micro-optimization is cute, but not particularly useful in most cases (since

generally the 32-bit overhead of assigning one extra integer variable is negligible

relative to overall memory usage of your software).

• Let’s open an example, noswap.c 6:

6 http://cdn.cs50.net/2015/fall/lectures/4/m/src4m/noswap.c

http://cdn.cs50.net/2015/fall/lectures/4/m/src4m/noswap.c
http://cdn.cs50.net/2015/fall/lectures/4/m/src4m/noswap.c

Week 4

10

#include <stdio.h>

void swap(int a, int b);

int main(void)

{

 int x = 1;

 int y = 2;

 printf("x is %i\n", x);

 printf("y is %i\n", y);

 printf("Swapping...\n");

 swap(x, y);

 printf("Swapped!\n");

 printf("x is %i\n", x);

 printf("y is %i\n", y);

}

/**

 * Fails to swap arguments' values.

 */

void swap(int a, int b)

{

 int tmp = a;

 a = b;

 b = tmp;

}

• We call this noswap because it doesn’t actually work. In main , we declare x and

y , print out messages for us to see their values, call the swap function, and print

their values again.

• But when we run it:

jharvard@ide50:~/workspace/src4m $./noswap

x is 1

y is 2

Swapping...

Swapped!

x is 1

y is 2

Week 4

11

• What’s going on? Let’s look at the values of our variables inside the swap function

as follows:

void swap(int a, int b)

{

 int tmp = a;

 a = b;

 b = tmp;

 printf("a is %i\n", a);

 printf("b is %i\n", b);

}

This is an example of debugging with printf , a simple technique for figuring out

what’s going on inside.

• Now when we run it:

jharvard@ide50:~/workspace/src4m $./noswap

x is 1

y is 2

Swapping...

a is 2

b is 1

Swapped!

x is 1

y is 2

• Variables x and y are local to main . We pass x and y to the function swap ,

where we’re calling them a and b (just so it’s clear that we can pass the function

values other than x and y specifically). But somehow the versions of x and y inside

swap are different from the versions inside main .

5. Debugging with CS50 IDE

• Let’s debug this, not with printf statements like we’ve done so far, but using the

built-in debugger in the CS50 IDE. This lets us get inside our program in real time.

• We start by clicking on the Debugger tab on the right edge of the IDE.

Under Local Variables, we’ll be able to see the values of all our local variables at

a particular point in the execution of our program.

Week 4

12

We can look at a particular point by setting a breakpoint, which we can set by

clicking to the left of the line number at the point in the code we want to inspect, and

all our breakpoints will appear under Breakpoints in the debugger tab. When the

program gets to that line, it will pause so you can look at what’s going on.

Call Stack describes the functions that have been called, starting with main .

• Let’s start by setting a breakpoint at main in noswap.c - a red dot should appear

to the left of the line.

• Now we click Debug at the top of the page, and we’ll see a debugger window at the

bottom of the page (where the Terminal usually is).

You should see the first line of code inside main highlighted in yellow, indicating that

execution has paused there (or really immediately before the highlighted line).

We can see local variables x and y have been created, but don’t have values yet

(so they initially have value 0 , in this particular case).

At this point we could click Resume (the play button in the debugger tab) to continue

executing the program (until the next breakpoint, but so far we’ve only set one

breakpoint).

We can also Step Over - i.e., run just the following line of code, without descending

into any functions that are called there - or Step Into - i.e., run the following line of

code and descend into any functions that are called there.

• For now, we’ll click Step Over, which runs just the following line of code:

 int x = 1;

Now if you look in the Local Variables list, you’ll see that x has the value 1 .

• Doing the same with the next line:

 int y = 2;

Now y has the value 2 in the list of local variables as well.

• When we step over the printf lines, the output is printed in the debugger console.

If we were to step into the printf lines, the debugger would take us into the code

for printf itself - not what we want, since our bug is certainly not caused by a

bug in printf !

Week 4

13

• Once we get to a line that calls a function we actually wrote - namely, swap - we click

Step Into to see what’s happening inside our function.

The first line of code inside swap is now highlighted, and our local variables are

a , which has a value of 1 , passed from x ; b , which has a value of 2 , passed

from y ; and tmp , which has a garbage value, since it has not been assigned a

value yet.

This time we didn’t get 0 as the uninitialized value, which is important to note

- there’s no guarantee that a variable you haven’t assigned a value to will start

with a value of 0 , or any other particular value.

The value of an uninitialized variable is whatever value was in the chunk of

memory that will be used to store the variable, which is just junk left over from

whatever that memory was last used for.

As we step over the three lines in swap , we can see tmp assigned the value of

1 from a , a assigned the value of 2 from b , and b assigned the value of 1

from tmp .

If we look at the Call Stack, we can see that now there are two entries: swap

and main . By clicking on them, we can change contexts and see what the local

variables are in each scope.

Inside swap , a and b have been swapped, but in main , x and y have not

been affected.

• It turns out that when we pass arguments to a function like this, we’re really passing

copies of the variables - so what swap gets from main is two new locations in memory

that contain the same values as x and y , and changing the values at those new

locations doesn’t change the original variables x and y .

• This is one way of thinking about how our computer’s memory is laid out:

| |

| text |

| |

| initialized data |

| uninitialized data |

Week 4

14

| heap |

| | |

| | |

| v |

| |

| |

| |

| ^ |

| | |

| | |

| stack |

| environment variables |

• The stack is just a chunk of memory used every time a function is called. The operating

system takes some amount of bytes and lets you run your function with places for

variables and other things you need. If you call another function, and another function,

and another function, you get more pieces of memory.

Each function call gets its own layer of memory, and when a function calls another

function (as main called swap), the next layer of memory is put down on top of

the first one.

• So the stack in our program might start to look like this:

. .

. .

. .

| |

| |

| |

|x 1 |y 2 | |

• main has this slice of memory, called a stack frame, and it contains two local

variables - x , containing the value 1 , and y , containing the value 2 . Each variable

gets its own 32-bit (because they’re integers) chunk of memory within the layer that

belongs to main .

• When main calls swap , swap gets another layer on top, where it puts its own local

variables:

Week 4

15

. .

. .

. .

| |

|a 1 |b 2 |tmp | |

|x 1 |y 2 | |

• Once the code inside swap has run, it’ll look like this:

. .

. .

. .

| |

|a 2 |b 1 |tmp 1 | |

|x 1 |y 2 | |

• So the swap has happened inside the section of memory allocated to swap , but the

memory layer belonging to main is untouched.

• How can we give a function "secret access" to a section of memory belonging to another

function?

6. Pointers

• Let’s look at compare-0.c7 to see what we’ve actually been working with this whole

time:

7 http://cdn.cs50.net/2015/fall/lectures/4/m/src4m/compare-0.c

http://cdn.cs50.net/2015/fall/lectures/4/m/src4m/compare-0.c
http://cdn.cs50.net/2015/fall/lectures/4/m/src4m/compare-0.c

Week 4

16

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 // get line of text

 printf("Say something: ");

 string s = GetString();

 // get another line of text

 printf("Say something: ");

 string t = GetString();

 // try (and fail) to compare strings

 if (s == t)

 {

 printf("You typed the same thing!\n");

 }

 else

 {

 printf("You typed different things!\n");

 }

}

• When we run it, what happens?

jharvard@ide50:~/workspace/src4m $./compare-0

Say something: mom

Say something: MOM

You typed different things!

jharvard@ide50:~/workspace/src4m $

Alright, those are different, as expected. What about if we type the same string

twice?

jharvard@ide50:~/workspace/src4m $./compare-0

Say something: Mom

Say something: Mom

You typed different things!

jharvard@ide50:~/workspace/src4m $

Week 4

17

• Even though those strings are identical, compare-0 is still telling us that they’re

different.

• To figure out why, let’s think about what GetString() is actually doing.

When GetString() is called, it gives us a chunk of memory, and fills in what

the user types:

| M | o | m |\0 |

If we store the return value of GetString() in a variable s , what’s actually in

that variable?

The string Mom is stored somewhere in memory. Our computers have some number

of bytes of memory (a very large number, likely in the billions), and we have some

way of numbering them all. Let’s imagine that our string Mom is stored in bytes 1

through 4 :

1 2 3 4

| M | o | m |\0 |

So what GetString() is actually returning is not the string Mom itself, per se,

but the address in memory where we can find it - so what’s being stored in s is

actually the memory address 1 .

s 1 2 3 4
----- -----------------

| 1 | | M | o | m |\0 |

----- -----------------

Now if we call GetString a second time, storing the result in the variable t ,

we get another string somewhere else in memory (let’s say addresses 9 through

12 , assuming some memory in between is being used for something else), and

we again store the address:

s 1 2 3 4
----- -----------------

| 1 | | M | o | m |\0 |

Week 4

18

----- -----------------

t 9 10 11 12
----- -----------------

| 9 | | M | o | m |\0 |

----- -----------------

• So when we compare s to t , as we did with the condition if (s == t) in our

original code, we see that they are not in fact equal, because 1 and 9 are not equal!

• We’re only given the address of the beginning of the string, but we can figure out where

it ends by looking for the \0 .

• We’re now taking off the training wheels and revealing that what we’ve been calling a

string this whole time is actually a char* , where the * denotes a pointer.

• We’ll discuss pointers in more detail next time, but for now this clip8 gives a brief

preview of what we’re in for.

8 https://youtu.be/SadMsthVUBM?t=3024

https://youtu.be/SadMsthVUBM?t=3024
https://youtu.be/SadMsthVUBM?t=3024

	Week 4
	Table of Contents
	1. Volkswagen and Trust in Software
	2. Recursion
	3. Sigma
	4. Swap
	5. Debugging with CS50 IDE
	6. Pointers

