
1

Week 5

This is CS50. Harvard University. Fall 2015.

Anna Whitney

Table of Contents

1. Introduction .. 1

2. More On Pointers .. 1

3. CS50 Library .. 3

4. Memory and Valgrind ... 11

5. Linked Lists .. 14

6. Stacks & Queues ... 17

1. Introduction

• We open with another 'enhance!' clip, in which investigators on a TV show are

nonsensically able to extract a high-resolution image of the reflection in a suspect’s

glasses from a low-resolution ATM camera image of the suspect.

2. More On Pointers

• Last Wednesday, we watched Pointer Fun with Binky1 and worked through this

example that illustrates some of the gotchas associated with working with pointers:

1 http://www.cs.stanford.edu/cslibrary/PointerFunCBig.avi

http://www.cs.stanford.edu/cslibrary/PointerFunCBig.avi
http://www.cs.stanford.edu/cslibrary/PointerFunCBig.avi

Week 5

2

int main(void)

{

 int* x;

 int* y;

 x = malloc(sizeof(int));

 *x = 42;

 *y = 13;

 y = x;

 *y = 13;

}

We start with the lines int* x; and int* y; , in which we declare two variables

of type int* , or pointers to int values. So far these variables don’t point to

anything, however.

We then give x somewhere to point with the line x = malloc(sizeof(int)); ,

which allocates enough memory to fit an int and stores the address of this chunk

of memory in x . In other words, x is now pointing to that address.

Next we store a value at the address of x with *x = 42; , which dereferences

x (goes to the address x) and sets the value in that chunk of memory we just

allocated to be the number 42 .

Then we try to do the same for y with *y = 13; , but we haven’t allocated any

memory for y to point at, so this makes Binky’s head explode. y contains some

garbage value, which the program tries to interpret as an address somewhere in

memory, but that location in memory doesn’t belong to the program so we can’t

assign to it.

In real life, this results in a segmentation fault - you’ve touched a segment of

memory that isn’t yours. This can also happen if you go too far in your array (i.e.,

trying to access indices beyond the bounds of your array).

We then do y = x; , which sets the address stored in y to the address stored in x .

Week 5

3

Now y points to memory we can use, so now we can dereference y and store the

value 13 there. Note that because y and x store the same address, if we check

what the value at x is now, we’ll also see 13 !

3. CS50 Library

• We’ve been using the functions GetString() , GetInt() , etc. We’ve started

alluding to some of how these functions work under the hood, but now we have the

tools to look at what’s actually happening.

• Let’s start by looking at scanf-0.c 2:

#include <stdio.h>

int main(void)

{

 int x;

 printf("Number please: ");

 scanf("%i", &x);

 printf("Thanks for the %i!\n", x);

}

It declares a variable x and printf s a message asking for a number, but what

about line 7?

scanf "scans" the user’s input in from the keyboard, using a format string just

like printf : %i means we expect an integer. Then we pass in &x , because

we want the input to be saved at that location (the address of the int variable

x). If scanf didn’t have access to the address of x , only a copy of x would be

changed by scanf .

• So we can run it:

jharvard@ide50:~/workspace/src5m $./scanf-0

Number please: 50

Thanks for the 50!

jharvard@ide50:~/workspace/src5m $./scanf-0

Number please: no

Thanks for the 0!

2 http://cdn.cs50.net/2015/fall/lectures/5/m/src5m/scanf-0.c

http://cdn.cs50.net/2015/fall/lectures/5/m/src5m/scanf-0.c
http://cdn.cs50.net/2015/fall/lectures/5/m/src5m/scanf-0.c

Week 5

4

jharvard@ide50:~/workspace/src5m $./scanf-0

Number please: ok

Thanks for the 0!

Hm, seems to work until we don’t cooperate and give it something that isn’t an int .

Clearly we need to implement some kind of error checking to make sure the user

really did type in a number.

• Let’s look at an attempt to replicate GetString() in scanf-1.c 3:

#include <stdio.h>

int main(void)

{

 char* buffer;

 printf("String please: ");

 scanf("%s", buffer);

 printf("Thanks for the %s!\n", buffer);

}

This time we don’t say &buffer , because buffer is already an address.

But we realize this is a bad example. We create a char* buffer and expect

scanf to take some string and put it in memory at whatever address buffer

points to. But buffer is some garbage value, so scanf will put the input at an

address that could be anywhere in memory. And if the memory doesn’t belong to

us, then we’ll probably cause a segmentation fault and crash our program.

• What if we did something like scanf-2.c 4?

#include <stdio.h>

int main(void)

{

 char buffer[16];

 printf("String please: ");

 scanf("%s", buffer);

 printf("Thanks for the %s!\n", buffer);

}

3 http://cdn.cs50.net/2015/fall/lectures/5/m/src5m/scanf-1.c
4 http://cdn.cs50.net/2015/fall/lectures/5/m/src5m/scanf-2.c

http://cdn.cs50.net/2015/fall/lectures/5/m/src5m/scanf-1.c
http://cdn.cs50.net/2015/fall/lectures/5/m/src5m/scanf-2.c
http://cdn.cs50.net/2015/fall/lectures/5/m/src5m/scanf-1.c
http://cdn.cs50.net/2015/fall/lectures/5/m/src5m/scanf-2.c

Week 5

5

Note that when you see a video on YouTube or streaming elsewhere "buffering",

that means that there’s an array of memory - typically more than 16 bytes, maybe

1 MB or 10 MB - that the video is being read into, and the video player has reached

the end of the array before the streaming service has been able to fill up the array

with more bytes of the video (often because of a slow network connection). A buffer

is simply this sort of array of memory, into which we read content from somewhere.

Again, we don’t need to use &buffer , because arrays are represented by pointers

to the actual memory where the contents of the array are stored, so buffer is

itself an address.

Let’s run it:

jharvard@ide50:~/workspace/src5m $./scanf-1

String please: helloworld

Thanks for the helloworld!

jharvard@ide50:~/workspace/src5m $./scanf-1

String please: [very long string of many more than 16 characters]

Segmentation fault

This example is better, since we’re declaring an array of characters, which sets

aside memory, and works perfectly, until we type in 16, 17, or more characters.

Then that string will partly end up in buffer , but overwrite whatever is beyond the

boundary of that array, since we only asked for 16 bytes.

We can support longer sentences by implementing a larger buffer, but that’s a waste

of space if we don’t actually fill them. And even then, it’s still possible for a user to

enter an even longer string.

• So how do we do this in the CS50 Library? Let’s look at the functions in cs50.c5,

in particular GetString :

5 http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/cs50.c

http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/cs50.c
http://cdn.cs50.net/2014/fall/lectures/5/m/src5m/cs50.c

Week 5

6

...

/**

 * Reads a line of text from standard input and returns it as a

 * string (char*), sans trailing newline character. (Ergo, if

 * user inputs only "\n", returns "" not NULL.) Returns NULL

 * upon error or no input whatsoever (i.e., just EOF). Leading

 * and trailing whitespace is not ignored. Stores string on heap

 * (via malloc); memory must be freed by caller to avoid leak.

 */

string GetString(void)

{

 // growable buffer for chars

 string buffer = NULL;

 // capacity of buffer

 unsigned int capacity = 0;

 // number of chars actually in buffer

 unsigned int n = 0;

...

Rather than assigning a buffer of a specific size, we’re starting with an empty buffer,

and we’ll grow it to fit the user’s input. This lets us fit long input without having to

allocate a lot of memory right away or set a specific length that the string must be.

We’ll malloc new memory each time we make the buffer larger and free the

old memory.

Note that we’re keeping track of how long our buffer has gotten and how many chars

we’ve actually stored in the buffer using unsigned int variables. Because an

unsigned int doesn’t need to keep track of sign, it has one additional bit to

use on the value (and thus twice as many possible values). Since sizes can’t be

negative, we don’t need to use half our possible values on negative numbers.

Week 5

7

...

 // character read or EOF

 int c;

 // iteratively get chars from standard input

 while ((c = fgetc(stdin)) != '\n' && c != EOF)

 {

...

c is a char , although we’re storing it as an int for reasons we won’t go into now.

You might’ve used fgetc on Problem Set 4, and certainly on Problem Set 5 it’ll

be of use. It gets one character at a time from a file - in this case stdin , the "file"

consisting of what the user is typing at their keyboard.

Week 5

8

...

 // grow buffer if necessary

 if (n + 1 > capacity)

 {

 // determine new capacity: start at 32 then double

 if (capacity == 0)

 {

 capacity = 32;

 }

 else if (capacity <= (UINT_MAX / 2))

 {

 capacity *= 2;

 }

 else

 {

 free(buffer);

 return NULL;

 }

 // extend buffer's capacity

 string temp = realloc(buffer, capacity * sizeof(char));

 if (temp == NULL)

 {

 free(buffer);

 return NULL;

 }

 buffer = temp;

 }

 // append current character to buffer

 buffer[n++] = c;

 }

...

Note the line string temp = realloc(buffer, capacity *

sizeof(char)); - the function realloc works like malloc , but allows you to

make an existing chunk of memory larger or smaller.

This lets us grow the buffer as the user types more characters. Each time we run

out of space, we double the size of our buffer to store what the user types.

Week 5

9

We double the size of the buffer each time, rather than just increasing it by a

fixed amount, to try to minimize the number of times we have to call malloc (or

realloc , in this case). Asking the operating system for more memory can be

slow, so we don’t want to do it too many times if the user inputs a very long string.

This is a subjective design decision, though - it means we’re probably wasting a bit

more space (e.g., if the string the user types in is one character longer than a power

of 2, almost half the buffer will be empty) in order to be a little bit faster. These sorts

of tradeoffs are the choices we often have to make when writing software.

Note that the other functions in the CS50 Library, like GetInt() , call

GetString() to deal with actually getting the characters the user typed, and then

parse those characters into the type they’re expecting:

Week 5

10

...

/**

 * Reads a line of text from standard input and returns it as an

 * int in the range of [-2^31 + 1, 2^31 - 2], if possible; if text

 * does not represent such an int, user is prompted to retry. Leading

 * and trailing whitespace is ignored. For simplicity, overflow is not

 * detected. If line can't be read, returns INT_MAX.

 */

int GetInt(void)

{

 // try to get an int from user

 while (true)

 {

 // get line of text, returning INT_MAX on failure

 string line = GetString();

 if (line == NULL)

 {

 return INT_MAX;

 }

 // return an int if only an int (possibly with

 // leading and/or trailing whitespace) was provided

 int n; char c;

 if (sscanf(line, " %i %c", &n, &c) == 1)

 {

 free(line);

 return n;

 }

 else

 {

 free(line);

 printf("Retry: ");

 }

 }

}

...

We’re using sscanf , a relative of scanf that lets us get values of particular types

out of a string, rather than out of stdin .

Week 5

11

We won’t go into why we’re using a %c format string in our call to sscanf as well

as the %i format string to actually get the int , but suffice it to say for now that it

lets us check that the user actually typed an int without any other junk.

• We’ve been handling all these low-level details for you via the CS50 Library, but on

Problem Set 4, Problem Set 5, and beyond, you’ll need to take on some of these details

yourself.

4. Memory and Valgrind

• It turns out that we’ve all been writing buggy code so far, even though it’s passing

check50 and working as intended. We’ve been calling GetString() , GetInt()

and so on, getting memory from the operating system, but we haven’t been giving back

that memory. This is called a memory leak.

This hasn’t been a huge problem because our programs automatically give back

their memory when they exit, but a program that runs for a long time without exiting

that has a memory leak will steadily use up your computer’s memory, slowing

everything down.

If you’ve left your computer running for some time, opening lots of programs, and it

gets slower, then the problem could be with certain programs asking for memory,

and forgetting about it, taking it away from other programs and slowing everything

else. (In particular, older versions of Firefox were often guilty of this.)

• We can use a tool called valgrind to help us figure out whether we’re returning the

memory we use correctly. Although not super user-friendly, valgrind is very useful

- it can tell us not only if we have memory leaks, but also if we’re touching memory

that doesn’t belong to us.

• We can run valgrind on a program called program in the current directory as

follows:

valgrind --leak-check=full ./program

• If we run valgrind on a program we have called memory , we get the following

output:

==15811== Memcheck, a memory error detector

==15811== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.

Week 5

12

==15811== Using Valgrind-3.10.0.SVN and LibVEX; rerun with -h for

 copyright info

==15811== Command: ./memory

==15811==

==15811== Invalid write of size 4

==15811== at 0x4005FF: f (memory.c:21)

==15811== by 0x400623: main (memory.c:26)

==15811== Address 0x5503068 is 0 bytes after a block of size 40 alloc'd

==15811== at 0x4C2AB80: malloc (in /usr/lib/valgrind/

vgpreload_memcheck-amd64-linux.so)

==15811== by 0x4005F6: f (memory.c:20)

==15811== by 0x400623: main (memory.c:26)

==15811==

==15811==

==15811== HEAP SUMMARY:

==15811== in use at exit: 40 bytes in 1 blocks

==15811== total heap usage: 1 allocs, 0 frees, 40 bytes allocated

==15811==

==15811== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==15811== at 0x4C2AB80: malloc (in /usr/lib/valgrind/

vgpreload_memcheck-amd64-linux.so)

==15811== by 0x4005F6: f (memory.c:20)

==15811== by 0x400623: main (memory.c:26)

==15811==

==15811== LEAK SUMMARY:

==15811== definitely lost: 40 bytes in 1 blocks

==15811== indirectly lost: 0 bytes in 0 blocks

==15811== possibly lost: 0 bytes in 0 blocks

==15811== still reachable: 0 bytes in 0 blocks

==15811== suppressed: 0 bytes in 0 blocks

==15811== Rerun with --leak-check=full to see details of leaked memory

==15811==

==15811== For counts of detected and suppressed errors, rerun with: -v

==15811== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

• The important parts here are Invalid write of size 4 , which is coming from

memory.c:21 (line 21 of the file memory.c), and 40 bytes in 1 blocks are

definitely lost , which is associated with line 20 in memory.c .

Invalid write means we tried to touch memory that didn’t belong to us, and

size 4 means that the section of memory that we touched was 4 bytes.

Week 5

13

Our other message, about memory being definitely lost , indicates that we

allocated memory but didn’t give it back. To give back memory, we use the function

free() , which takes just one argument - the variable that you want to give back.

• Let’s look at what’s actually in memory.c 6:

/**

 * memory.c

 *

 * david j. malan

 * malan@harvard.edu

 *

 * demonstrates memory-related errors.

 *

 * problem 1: heap block overrun

 * problem 2: memory leak -- x not freed

 *

 * adapted from

 * http://valgrind.org/docs/manual/quick-start.html#quick-start.prepare.

 */

#include <stdlib.h>

void f(void)

{

 int* x = malloc(10 * sizeof(int));

 x[10] = 0;

}

int main(void)

{

 f();

 return 0;

}

In line 20, we declare a pointer variable x and assign to it the address returned

by malloc , which allocates enough memory for 10 int values, or 40 bytes. This

is giving us the 40 bytes in 1 blocks are definitely lost , because

we don’t free this memory.

6 http://cdn.cs50.net/2015/fall/lectures/5/m/src5m/memory.c

http://cdn.cs50.net/2015/fall/lectures/5/m/src5m/memory.c
http://cdn.cs50.net/2015/fall/lectures/5/m/src5m/memory.c

Week 5

14

In line 21, we try to write to x[10] , but the indices of x only go up to 9 (because it

can contain 10 integers, we can access them as x[0] through x[9]). This gives

us the Invalid write of size 4 , because we’re trying to put an int (4

bytes) somewhere we don’t own.

If we change line 21 to x[9] = 0; and add free(x); right before we exit the

function f , then valgrind will show us that we have no memory errors.

• As an aside, you should now find this xkcd7 funny.

5. Linked Lists

• We’ve been using arrays to solve all kinds of problems, but what’s one potential

downside of an array? Arrays are of a fixed size, so if you want to put more things in

your array than you have space for, you have to allocate a new array.

• Another data structure we can use to store lists of values is a linked list. Instead of

memory all consecutively in a row, we have blocks of memory spread out:

The boxes look orderly in the image, but in reality they might be all over the place,

with arrows that link each rectangle to the next.

Because these boxes don’t have to be next to each other in memory, we can add

more boxes to our list or remove boxes from our list without copying everything over

to a new list.

• We’ve used pointers to represent an arrow, so instead of an array that only stores

numbers, we can store a pointer next to each number that weaves all of these

rectangles together.

• If we wanted to implement this, we’d start by noticing that each of these rectangles

aren’t a single number, but rather an int (though they can store any sort of value)

and a pointer :

• To create our own data structure, we just have to define a struct like we’ve seen

before:

7 http://xkcd.com/138

http://xkcd.com/138
http://xkcd.com/138

Week 5

15

typedef struct

{

 string name;

 string house;

}

student;

• Now we can take that idea and do something like the following:

typedef struct node

{

 int n;

 struct node* next;

}

node;

A node is a general computer science term for an element in a data structure.

• Our node will have the int and also a struct node* , or pointer to another node.

• typedef struct node is also at the top, for node to be able to refer to itself or

another node , or self-referential. Notice how we didn’t need that for student since

they don’t need to refer to another student.

• Let’s think about this with help from volunteers from the audience.

• We line up people to represent each rectangle, with volunteer David on the far left to

represent first , which is just a pointer that lets us keep track of where the beginning

of our list is in memory:

[]----->[9]--->[17]--->[22]--->[26]--->[34]

 |

 V

And we have everyone pointing to either the next node , or in the case of 34 ,

pointing downward to represent NULL (i.e., the end of the list).

• Now let’s try to insert the element 55 , held by volunteer Rainbow. We want to keep

the list sorted, so we’ll move down the list, comparing each value to 55 and following

the pointer to the next node. So we get to the end, and the pointer in the node of 55

will be NULL and the pointer of 34 will change to point to the node containing 55 :

Week 5

16

[]----->[9]--->[17]--->[22]--->[26]--->[34]--->[55]

 |

 V

• Now let’s say we have to insert to the beginning of the list, a number like 5 . We start

by intializing our ptr to the point to the first element, 9 , and realize that 5 is less

than 9 . So now volunteer David, first , needs to point to the node of 5 and the

node of 5 will now point at 9 :

[]----->[5]--->[9]--->[17]--->[22]--->[26]--->[34]--->[55]

 |

 V

In this case, we have to be careful about our order of operations: if we have first

point to 5 before we have anything point at 9 , then we’ve lost our access to the

rest of the list. So we have 5 point at 9 first, then have first point at 5 .

• Now let’s consider inserting a node into the middle, like the number 20 . We go through

the list, and realize that 20 is less than 22 . We again need to be careful about order,

making sure that 22 points to 26 before we change 20 to point at 22 .

[]----->[5]--->[9]--->[17]--->[20]--->[22]--->[26]--->[34]--->[55]

 |

 V

• So this seems awesome. Now we have a list that we can grow and shrink as needed.

What tradeoffs are we paying for in exchange for this flexibility?

Storing the same number of values in a linked list takes twice as much space as in

an array - we’re not just storing an int in each node, we’re storing an int and

a pointer to the next node.

We have to traverse the linked list one node at a time, so we can’t use the square

bracket notation to go directly to a particular node in the list anymore. The ability

to index directly into any element of an array is called random access. Without

random access, for example, we can only use linear search (and not binary search),

because we can’t go straight to the middle of the list.

Week 5

17

6. Stacks & Queues

• There are other data structures besides linked lists we can use to solve different

problems, too.

• Think about a stack of dining hall trays, imagining that each represents a number. As

we put down each tray, we put the next one on top of it, and so on. If we then take a

tray off the stack, we get the most recently added number.

This represents a data structure appropriately called a stack, or LIFO, for last in,

first out (i.e., the last value added to the stack is the first value taken off it).

• We can instead think about the line in front of the Apple Store when a new iPhone

comes out, where the first person to arrive is the first person to receive an iPhone.

This represents a data structure called a queue, or FIFO, for first in, first out.

• Either a stack or a queue (or many other data structures) can be implemented on top

of either an array or a linked list, with different time and space tradeoffs associated

with each.

• On Wednesday, we’ll look at another data structure that will again let us search in O(log

n) time.

• We’ll also be looking for the "holy grail" of a data structure that lets us search in O(1)

(constant) time.

	Week 5
	Table of Contents
	1. Introduction
	2. More On Pointers
	3. CS50 Library
	4. Memory and Valgrind
	5. Linked Lists
	6. Stacks & Queues

