
1

Week 9

This is CS50. Harvard University. Fall 2015.

Anna Whitney

Table of Contents

1. Announcements .........................................................................................................  1

2. JavaScript ..................................................................................................................  1

2.1. Syntax ..............................................................................................................  2

2.2. JSON ...............................................................................................................  5

3. Document Object Model ............................................................................................  5

4. Ajax and Asynchronicity ........................................................................................... 13

1. Announcements

• Today would have been Mr. Boole’s (of Boolean logic) 200th birthday, so Google

celebrates with a Boolean-themed Google Doodle.

• As usual, CS50 Lunch is Friday; sign up at cs50.harvard.edu/rsvp.

• If you’re considering concentrating in Computer Science (or switching your existing

concentration to CS), you should stop by the SEAS Advising Fair on Wednesday, 11/5,

from 4-5:30 PM in Maxwell Dworkin (donuts will be available!).

• David shows us some embarrassing old websites he created.

2. JavaScript

• We’ll give you the final piece of our web programming tools in this course now, which

you may find particularly helpful for final projects.

• Recall that C is a compiled language, meaning that your code gets turned into 0s and

1s that a computer can understand before you run it.

• PHP, on the other hand, is an interpreted language, meaning that a program called an

interpreter is figuring out what your code means line by line as you run it and directing

the computer to do the correct actions.



Week 9

2

• We also introduced HTML, which isn’t a programming language at all - it’s a markup

language, so it doesn’t have loops, conditions, etc, just formatting and ways of

representing the content of a page.

• CSS is also not a programming language, and even more aesthetically oriented.

• SQL is in fact a programming language (albeit one specifically tailored to database

manipulations), and you can write entire procedures (functions) in SQL, although in this

course we stick to a small (but very useful) subset of what SQL can do.

• And now we’ll formally introduce JavaScript, which, like PHP, is an interpreted

language.

# Unlike PHP, JavaScript can (and usually does) run client-side - that is, it’s not being

interpreted by your web server and served up to your site’s users (server-side, like

PHP), it’s interpreted by the browser on your user’s computer.

# It is possible to write server-side JavaScript (and use it as the backend of any

application you might otherwise write in PHP or some other language), using

frameworks like Node.js, but in this course we’re going to focus on client-side

JavaScript.

# This means anyone can see the JavaScript code on your site, because their browser

needs to have that information so it can execute the JavaScript.

2.1. Syntax

• JavaScript is also quite syntactically similar to C and PHP.

• There’s no main function - you just start writing your code.

• Conditions are syntactically identical to C and PHP:



Week 9

3

if (condition)

{

    // do this

}

else if (condition)

{

    // do that

}

else

{

    // do this other thing

}

# Also exactly as in C and PHP, boolean conditions can be combined with &&  or || .

• Switches are also syntactically equivalent to those in C and PHP:

switch (expression)

{

    case i:

        // do this

        break;

    case j:

        // do that

        break;

    default:

        // do this other thing

        break;

}

• The loops we’ve seen before are structured the exact same way, too, such as the for

loop:

for (initializations; condition; updates)

{

    // do this again and again

}

• We have a new type of loop as well, though:



Week 9

4

for (var key in object)

{

    // do this with object[key]

}

# We’ll refer to this as a for-in loop, sort of analogous to PHP foreach loop.

# All this means is if we’ve got an object (which we’ll describe more in a moment), we

can iterate over the key-value pairs inside, with JavaScript grabbing a new key from

the object each iteration. We can get at the value associated with that key by treating

the object as an associative array and indexing into it by key as object[key] .

• Arrays are declared similarly to PHP:

var numbers = [4, 8, 15, 16, 23, 42];

# Note that we don’t prepend our variable names with dollar signs in JavaScript,

though!

# JavaScript, like PHP, is loosely typed, so we as the programmer don’t need to

specify our variable types.

• More generally, we can declare variables like so:

var s = "hello, world";

• And then we have objects, with keys and values, not unlike PHP’s associative arrays

(although with some differences):

var quote = {symbol: "FB", price: 101.53};

# This object has two keys ( symbol  and price ), each with a value.

# Contrast this with the syntax for an associative array in PHP:

$quote = ["symbol" => "FB", "price" => "101.53"];

# These are just syntactic differences - the key-value pairs work exactly the same

way.



Week 9

5

# Just like in PHP, we could access the value associated with symbol

via $quote["symbol"] , we can do the same in JavaScript with

quote["symbol"] .

2.2. JSON

• Apart from these minor syntax issues, what can we actually do with JavaScript?

• Recall in Problem Set 7, we provide you with a configuration file called config.json .

We could have used any of several different text formats to store the configuration

information, but JSON has some advantages.

{

    "database": {

        "host": "localhost",

        "name": "pset7",

        "username": "TODO",

        "password":   "TODO"

    }

}

# This is an object in JavaScript - there’s one key-value pair, where the key is

database , and the value is itself another object (with keys host , name ,

username , and password ).

• JSON is a standard format for storing data - a little nitpicky (a JSON file won’t be

readable if we omit a comma or quotes, etc), but widely used and pretty flexible.

3. Document Object Model

• Recall that we can represent HTML as a tree diagram:



Week 9

6

<!DOCTYPE html>                                  (document)

                                                     |

<html>                                             [html]

  <head>                                           /    \

    <title>hello, world</title>                [head]  [body]

  </head>                                        |        |

  <body>                                      [title]  (hello, world)

    hello, world                                 |

  </body>                                    (hello, world)

</html>

• JavaScript will let us manipulate the DOM, this tree of relations between different HTML

elements, directly.

# We don’t have to code the tree data structure ourselves - the browser does it for us,

and essentially hands us a pointer to the root of the tree.

• We can do all kinds of things with the elements of the DOM, like handling events.

# Recall from Week 0, in Scratch, we had an example where one sprite said "Marco!"

and the other sprite listened for that and responded with "Polo!". This is an example

of event handling.

# JavaScript lets us listen for all kinds of events related to DOM elements, such as

onclick , onsubmit , onmouseover , and many, many more. An onclick

listener waits for the user to click the element in question, and then does something

when they do.

# For example, when you click and drag in Google Maps, the map moves around.

They could implement this by listening for a mousedown  event and a drag  event,

and implementing the appropriate behavior in response.

• Let’s look at some actual code, in dom-0.html 1.

# When we type in the name "David" in the input box and click Submit or press enter,

an alert window pops up saying "Hello, David!"

# If we type in a different name, the alert adjusts to show a different name.

# Alerts are pretty ugly and distracting, so for real sites we’ll want a different way to

say something to the user, but this shows one big difference between this method
1  http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/dom-0.html

http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/dom-0.html
http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/dom-0.html


Week 9

7

and what we were doing in PHP - when we submit the form, we don’t reload or go

to another page!

# If we check in Chrome’s Network tab, we can see that there’s no network traffic

when we submit the form.

• Looking at the code itself, we can see that there’s some HTML that we’re mostly already

familiar with, and a new <script>  tag in the header:

<!DOCTYPE html>

<html>

    <head>

        <script>

            function greet()

            {

                alert('hello, ' + document.getElementById('name').value +

 '!');

            }

        </script>

        <title>dom-0</title>

    </head>

    <body>

        <form id="demo" onsubmit="greet(); return false;">

            <input id="name" placeholder="Name" type="text"/>

            <input type="submit"/>

        </form>

    </body>

</html>

# First looking just at the HTML, we can see that our <form>  tag now has an attribute

called onsubmit  with the value "greet(); return false;" .

# This quoted string is in JavaScript, calling a function called greet , which is defined

up above.

# greet  calls the JavaScript function alert , which pops up that ugly alert

window we saw.

# We’re using +  to concatenate strings here, just like we used .  in PHP (and

again, MUCH easier here than in C!).



Week 9

8

# In between the string parts we can see, we have

document.getElementById('name').value . Let’s break this down some

more.

• Remember our DOM tree above? document  here refers to the root node of

the tree, which is a special global variable in JavaScript.

• We have a function called getElementById  that lets us traverse the DOM

tree to find the element with the specified id  attribute, here name .

# Note that this function is inside the document object, which is why we call

it with this dot notation (not unlike getting an element of a C struct).

# This function hands back the node of the tree with the id  we asked for,

and then we can get various properties of that node - one of which is called

value .

• So at the end of all of this, we get back the string that the user typed in the box.

# So why, after greet(); , do we return false;  in the onsubmit  here?

# We didn’t specify an action  for this form, but by default, that means the form

submits to this same page ( dom-0.html ).

# If we delete the return false; , reload the page, open up our Network tab

and click "Preserve log", and then submit the form again, now we can see that the

form is submitting back to this same URL and sending another HTTP request.

# This is not what we want to do, so we return false  to short-circuit the

browser’s default behavior and avoid reloading the page.

• Let’s look at a marginally better version of this code, in dom-1.html 2:

2  http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/dom-1.html.src

http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/dom-1.html.src
http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/dom-1.html.src


Week 9

9

<!DOCTYPE html>

<html>

    <head>

        <title>dom-1</title>

    </head>

    <body>

        <form id="demo">

            <input id="name" placeholder="Name" type="text"/>

            <input type="submit"/>

        </form>

        <script>

            document.getElementById('demo').onsubmit = function() {

                alert('hello, ' + document.getElementById('name').value +

 '!');

                return false;

            };

        </script>

    </body>

</html>

# This implementation behaves exactly the same way, but rather than having an

onsubmit  attribute that calls a function in the midst of our HTML, we have all of

our JavaScript code inside our <script>  element.

# This is much more maintainable, because it’s easier to find the code to change

it if it’s all in one place!

# We’re grabbing the form element using its id , once again with

document.getElementById , and we’re directly assigning its onsubmit

attribute within our script, which we know is a valid event listener for a form element.

# The value of the onsubmit  property needs to be a function, but rather than

name this function, write it up separately, and then call it, we’re using a feature of

JavaScript called an anonymous function here (PHP and C actually also have

this feature - C via "function pointers" - but we never really went into them, and

they’re more commonly used in JavaScript).



Week 9

10

• What more can we do to improve our code? Let’s see in dom-2.html 3:

<!DOCTYPE html>

<html>

    <head>

        <script src="https://code.jquery.com/jquery-latest.min.js"></

script>

        <script>

            $(document).ready(function() {

                $('#demo').submit(function(event) {

                    alert('hello, ' + $('#name').val() + '!');

                    event.preventDefault();

                });

            });

        </script>

        <title>dom-2</title>

    </head>

    <body>

        <form id="demo">

            <input id="name" placeholder="Name" type="text"/>

            <input type="submit"/>

        </form>

    </body>

</html>

# Now we’re incorporating a very common JavaScript library called

jQuery, which takes normally very verbose JavaScript code like

document.getElementById('demo')  and turns it into $('#demo') .

# This is the equivalent way of doing the exact same thing as before in jQuery as

opposed to native JavaScript.

# This code roughly means "When the document is ready, set this anonymous function

as the submit handler for the element called 'demo', which will pop up an alert and

then return false."

3  http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/dom-2.html.src

http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/dom-2.html.src
http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/dom-2.html.src


Week 9

11

# Rather than actually return false; , here we have the line

event.preventDefault(); , which has the same effect - short-circuiting the

browser’s default behavior of submitting the form and reloading the page.

• Let’s use this for something a little more useful in form-0.html4. We can set up a

form, e.g. for the Frosh IMs website.

# When we submit the form, whether we cooperate and type a real email address,

matching passwords, and check the box, or not, this takes us to a page saying, "You

are registered! (Well, not really.)".

# We can certainly check for correct input in PHP, but then the request has to go all

the way to the server just to tell the user they did something wrong and have to try

again - it would be better if we could give the user more immediate feedback.

• In form-1.html5, we use JavaScript to perform client-side validation, and actually

check for correct input before the request can be sent to the server:

4  http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/form-0.html
5  http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/form-1.html

http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/form-0.html
http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/form-1.html
http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/form-0.html
http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/form-1.html


Week 9

12

<!DOCTYPE html>

<html>

    <head>

        <title>form-1</title>

    </head>

    <body>

        <form action="register.php" id="registration" method="get">

            Email: <input name="email" type="text"/>

            <br/>

            Password: <input name="password" type="password"/>

            <br/>

            Password (again): <input name="confirmation" type="password"/>

            <br/>

            I agree to the terms and

 conditions: <input name="agreement" type="checkbox"/>

            <br/><br/>

            <input type="submit" value="Register"/>

        </form>

        <script>

            var form = document.getElementById('registration');

            // onsubmit

            form.onsubmit = function() {

                // validate email

                if (form.email.value == '')

                {

                    alert('You must provide your email address!');

                    return false;

                }

                // validate password

                else if (form.password.value == '')

                {

                    alert('You must provide a password!');

                    return false;

                }

                // validate confirmation

                else if (form.password.value != form.confirmation.value)

                {

                    alert('Passwords do not match!');

                    return false;

                }

                // validate agreement

                else if (!form.agreement.checked)

                {

                    alert('You must agree to the terms and conditions!');

                    return false;

                }

                // valid!

                return true;

            };

        </script>

    </body>

</html>



Week 9

13

# Now we detect when passwords do not match, or when the user did not agree to

the terms and conditions without submitting the form.

# This decreases server load, because it prevents erroneous input from wasting

your server’s time just to say that the input is wrong.

# Especially on a mobile device, there can be significant latency to a call to the

server, so it can be faster to validate input on the client side.

# Inside our <script>  tag, we’re finding the form element using

document.getElementById , and then registering an event listener with an

anonymous function that checks various input.

# Even if some of the syntax looks a little unfamiliar, the basic logic here is the

same as what we might have used in C or PHP.

# Note that the checkbox input type has a property called checked  with a

Boolean value indicating whether the box is checked or not.

# If everything went well, we return true;  and the form is submitted to the server;

otherwise, if the user typed something wrong, we return false;  and prevent

submission of the form.

• In form-2.html6, we have the jQuery version of the same code, which you can look

at if you’re interested in doing things that way for your final project.

4. Ajax and Asynchronicity

• If we go to Google Maps and scroll around the page really quickly, we can see that as

we scroll to a new location, it’s first full of blank squares before the actual map loads.

• This is an example of Ajax, or Asynchronous JavaScript And XML, which we can use

JavaScript for going forward.

• On MapQuest, a 1990s precursor to Google Maps, if you wanted to scroll up on the

map, you had to click an up arrow and the whole page would reload to show you the

next square of the map upward.

• Ajax is a technique that uses JavaScript to send additional HTTP requests after the

page has loaded, without reloading the whole page.

6  http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/form-2.html.src

http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/form-2.html.src
http://cdn.cs50.net/2015/fall/lectures/9/m/src9m/form-2.html.src


Week 9

14

# For example, when you receive a new email in Gmail, the page doesn’t reload every

time; the new email just appears.

# Gmail traverses the DOM tree to find the inbox part of the page, and inserts a new

node - a new HTML element - corresponding to the new email.

• If you go to Google (with Instant Search on) and start typing in a search query, a new

request gets sent every time you add another character.

• To finish up today’s lecture, David calls up a volunteer to give a demo of a game on

the Oculus Rift.


	Week 9
	Table of Contents
	1. Announcements
	2. JavaScript
	2.1. Syntax
	2.2. JSON

	3. Document Object Model
	4. Ajax and Asynchronicity

