
1

Week 9, continued

This is CS50. Harvard University. Fall 2015.

Anna Whitney

Table of Contents

1. Introduction ................................................................................................................  1

2. Anonymous Functions and Callbacks ........................................................................ 1

3. Ajax ............................................................................................................................  1

4. Giza Project ...............................................................................................................  7

1. Introduction

• Today’s lecture is being shot in 3D!

• David calls volunteer Ariana up to demonstrate watching a video trailer on the Oculus

Rift.

• Donuts available today at 4 PM at the SEAS Advising Fair in Maxwell Dworkin.

2. Anonymous Functions and Callbacks

• An anonymous function is a function without a name. It can be bound to an event,

or passed to another function.

• When we pass a function like this (anonymous or otherwise) to another function or to

an event handler to be called when something happens or when some data is ready,

it’s called a callback (or callback function).

3. Ajax

• Ajax once upon a time stood for "Asynchronous JavaScript And XML", but now refers

more generally to the technology whereby a browser can request more data from a

server after a page has already loaded, without reloading the whole page.



Week 9, continued

2

• In Problem Set 7, you’re not using Ajax - when the user fills out a form or clicks a

button and you generate dynamic content, that content is being generated entirely on

the server and the browser reloads the page or goes to a new page to show it to you.

• However, in Problem Set 8, you’ll use JavaScript and Ajax to make dynamic changes

a little more seamlessly.

• There was, once upon a time in the '90s, an HTML tag called <blink>  that did just

that - made text blink on the screen. Today’s browsers don’t support it, because it’s

heinous, but we can reimplement it in JavaScript, as in blink.html 1:

1  http://cdn.cs50.net/2015/fall/lectures/9/w/src9w/blink.html.src

http://cdn.cs50.net/2015/fall/lectures/9/w/src9w/blink.html.src
http://cdn.cs50.net/2015/fall/lectures/9/w/src9w/blink.html.src


Week 9, continued

3

<!DOCTYPE html>

<html>

    <head>

        <script>

            // toggles visibility of greeting

            function blink()

            {

                var div = document.getElementById('greeting');

                if (div.style.visibility == "hidden")

                {

                    div.style.visibility = "visible";

                }

                else

                {

                    div.style.visibility = "hidden";

                }

            }

            // blink every 500ms

            window.setInterval(blink, 500);

        </script>

        <style>

            #greeting

            {

                font-size: 96pt;

                margin: 240px;

                text-align: center;

            }

        </style>

        <title>blink</title>

    </head>

    <body>

        <div id="greeting">

            hello, world

        </div>

    </body>

</html>



Week 9, continued

4

# We’ve given the <div>  a unique identifier of greeting , so we can access it by

id  in either CSS or JavaScript.

# We then use CSS in a <style>  element to make the text big.

# But we also have a <script>  tag, in which we’re actually going to make the text

blink.

# In the blink  function, first we use

document.getElementById('greeting')  to get a reference to the node

of the DOM tree corresponding to the text we want to blink.

# We can use JavaScript to manipulate the CSS properties of HTML elements!

We then check whether the text is currently hidden and make it visible if so, or

vice versa. But this only changes the visibility of the text once, not repeatedly,

so we’re not quite blinking yet.

# We use a function called window.setInterval , where window  is a global

object not unlike document  that refers to the entire window rather than the

contents of the page. setInterval  lets you set a function to be called

repeatedly at some specific interval, so we’re calling blink  every 500 ms.

• Now let’s do something a little more interesting. In Problem Set 7, you’ve implemented a

quote page, where the user can type in a stock symbol and get back the current price of

the stock, by sending an HTTP request to a PHP page that gets that price from Yahoo.

# Instead of reloading, going to another page, etc. when we make that HTTP request,

we can use Ajax to give us the stock price without going anywhere else, as in

ajax-0.html 2:

2  http://cdn.cs50.net/2015/fall/lectures/9/w/src9w/ajax-0.html.src

http://cdn.cs50.net/2015/fall/lectures/9/w/src9w/ajax-0.html.src
http://cdn.cs50.net/2015/fall/lectures/9/w/src9w/ajax-0.html.src


Week 9, continued

5

<!DOCTYPE html>

<html>

    <head>

        <script src="https://code.jquery.com/jquery-latest.min.js"></

script>

        <script>

            /**

             * Gets a quote via JSON.

             */

            function quote()

            {

                var url = 'quote.php?symbol=' + $('#symbol').val();

                $.getJSON(url, function(data) {

                    alert(data.price);

                });

            }

        </script>

         <title>ajax-0</title>

     </head>

     <body>

         <form onsubmit="quote(); return false;">

            

 Symbol: <input autocomplete="off" autofocus id="symbol" type="text"/>

             <br/><br/>

             <input type="submit" value="Get Quote"/>

         </form>

     </body>

 </html>

# We’re using the onsubmit  event handler to get the quote, and then we

return false;  to prevent the page reloading.

# The quote  function calls $.getJSON  with a URL based off quote.php ,

which David wrote earlier to format the stock information as JSON. We’re using

HTTP GET  to pass the symbol to quote.php , getting the symbol the user

entered from the element with id symbol  (don’t worry too much about the

JQuery syntax here if unfamiliar - it’s a useful library to get to know for a final

project, though).



Week 9, continued

6

• Note that the $  in $.getJSON  is just an alias for jQuery , rather than a

special character like in PHP.

# The first argument to getJSON  is the URL, and the second is a callback

function!

• The purpose of a callback function is that the Internet can be slow, so if you

go to get data from somewhere else, you don’t want your entire webpage to

hang until the data comes back - instead, you can tell the browser what to do

when it gets the data back using a callback function, so everything else on

the page still works while waiting for the data.

# This is pretty ugly, though, since it pops up an alert with the price. We can do much

better and embed the result in the actual HTML of the page, much more akin to how

the websites you’re familiar with - Facebook, Gmail, etc - actually go about using

Ajax. See ajax-2.html 3, which is pretty similar except for the following changes:

# In the HTML of the page, we’ve added a new <span>  (like a <div> , but inline)

called price :

...

<form onsubmit="quote(); return false;">

   

 Symbol: <input autocomplete="off" autofocus id="symbol" type="text"/

>

    <br/>

    Price: <span id="price">to be determined</span>

    <br/><br/>

    <input type="submit" value="Get Quote"/>

</form>

...

# And in our script, we’ve changed our callback function a little:

3  http://cdn.cs50.net/2015/fall/lectures/9/w/src9w/ajax-2.html.src

http://cdn.cs50.net/2015/fall/lectures/9/w/src9w/ajax-2.html.src
http://cdn.cs50.net/2015/fall/lectures/9/w/src9w/ajax-2.html.src


Week 9, continued

7

function quote()

{

    var url = 'quote.php?symbol=' + $('#symbol').val();

    $.getJSON(url, function(data) {

        $('#price').html(data.price);

    });

}

# All we’re doing here is getting the element with id price  and updating its HTML

contents.

# Note that because we’re changing the HTML directly, we have to be careful about

sanitizing our inputs for security reasons.

4. Giza Project

• Professor Peter Manuelian speaks about the convergence of computer science and

archaeology.

• At Giza, not far from modern Cairo, there are three pyramids, but many, many other

tombs around them.

• We can think of Giza as having two major datasets - what’s there and what’s been

taken to museums.

# Both give us information about how the Egyptians lived and how they died.

• "Harvard Camp" was a collection of mud-brick huts not far from the pyramids, where

the Harvard University-Museum of Fine Arts expedition was headquartered.

# The HU-MFA expedition excavated at over 40 sites!

• What happens with the massive archaeological backlog that an expedition like this

produces? Tons of manuscripts, glass plate negatives, etc. This is where the computers

come in.

• We can apply a grid over the whole area, and we see that some parts of the grid

were dug by the American (HU-MFA expedition) archaeologists, but there was also an

Austrian expedition, and some Egyptian digs. We need to combine all this data.

• Each tomb or temple has many different types of data associated with it, which have

been collected in a SQL database.



Week 9, continued

8

• This is complicated by damage to the sites, not just from the elements and the passage

of time but also from intentional vandalism.

• Which is more likely to be readable many years from now - a hard drive, or a "really

hard drive" (information carved in stone)? As information storage systems go, carvings

in stone are particularly durable in the long term.

• From all the databases and information, the next step is visualization - letting people

see the sites, using all kinds of 3D technology (including the Oculus Rift).

• We can go beyond visualization to recreation. Thanks to meticulous documentation,

we can reconstruct the state of some of the furniture in the sites in 3D.

# We can then use these virtual 3D reconstructions to make actual, physical 3D

reconstructions so everyone can see what the furniture actually looks like.

# This method is being used with Queen Hetepheres’s chair, found in fragments at

one site, which is currently being recreated and will be put on display at the Harvard

Semitic Museum.

• How do we build computer models of all of Giza, not just individual tombs?

# We can scan using aerial drones, particle detectors, radiography imaging, and more.

The particle techniques let us see inside the pyramids, while the drones can put

together complete 3D scans.

• Some of this information is online in slightly outdated form at gizapyramids.org4; it’s

being updated and could use your help.

• There’s also a 3D site (unfortunately does not work on Macs) at giza.3ds.com5.

# You can explore many sites, including at different points in time. There are narrated

tours, photos, and wireframes showing how the 3D reconstructions were made, as

well as the actual 3D models you can explore.

• Massive amounts of data like this need to be organized well to make them accessible

to non-Egyptologists.

• Some suggested CS50 Giza archaeology project topics:

# Build a mobile app tour guide for the Hetepheres chair
4  http://www.gizapyramids.org
5  http://giza.3ds.com

http://www.gizapyramids.org
http://giza.3ds.com
http://www.gizapyramids.org
http://giza.3ds.com


Week 9, continued

9

# Create a better thesaurus tool to add descriptive content to http://

www.gizapyramids.org/search/advanced/Photos?

t:state:flow=cc91c7d3-41ee-499c-b2a9-1b8a8e379598

# Try a Google Cardboard app: Immersive stereo 3D content (we have sample bubble

images)

# Create a web tour of "Harvard Camp" dig house

# Build a tomb in 3D Studio Max or Maya and animate it

# Build a "my Giza" feature for the new website (saved collections)

# Build a better way to handle our long list of PDF bibliography items6

# Build a website guide to Giza or Egyptian content in the Harvard Semitic Museum

• There will be a Gen Ed course next semester that covers significant amounts of

Egyptian history.

• There is still exploration ongoing at Giza, which we want to incorporate into a central

location online.

6  http://www.gizapyramids.org/static/html/authors_list.jsp

http://www.gizapyramids.org/static/html/authors_list.jsp
http://www.gizapyramids.org/static/html/authors_list.jsp

	Week 9, continued
	Table of Contents
	1. Introduction
	2. Anonymous Functions and Callbacks
	3. Ajax
	4. Giza Project

