
1

Problem Set 1: C

This is CS50. Harvard University. Fall 2015.

Table of Contents

Objectives ... 1

Recommended Reading ... 2

Academic Honesty ... 2

Reasonable ... 3

Not Reasonable .. 3

Assessment .. 4

Getting Started ... 5

Logging In ... 5

Updating .. 6

Hello .. 6

Hello, C .. 9

CS50 Check ... 11

Shorts ... 13

Hello again, C .. 14

Smart Water ... 14

Itsa Mario ... 16

Time for Change .. 18

How to Submit ... 22

Step 1 of 2 .. 22

Step 2 of 2 .. 23

Objectives

• Get comfortable with Linux.

• Start thinking more carefully.

• Solve some problems in C.

Problem Set 1: C

2

Recommended Reading

• Pages 1 – 7, 9, and 10 of http://www.howstuffworks.com/c.htm.

• Chapters 1 – 5, 9, and 11 – 17 of Absolute Beginner’s Guide to C.

• Chapters 1 – 6 of Programming in C.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on

quizzes is not permitted at all. Collaboration on the course’s final project is permitted to

the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly. If the course refers some

matter for disciplinary action and the outcome is punitive, the course reserves the right to

impose local sanctions on top of that outcome that may include an unsatisfactory or failing

grade for work submitted or for the course itself.

If you commit some act that is not reasonable but bring it to the attention of the course’s

heads within 72 hours, the course may impose local sanctions that may include an

unsatisfactory or failing grade for work submitted, but the course will not refer the matter

for further disciplinary action except in cases of repeated acts.

http://www.howstuffworks.com/c.htm

Problem Set 1: C

3

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at office hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

Problem Set 1: C

4

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Problem Set 1: C

5

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

All students, whether or not taking the course for a letter grade, must ordinarily submit

this and all other problem sets to be eligible for a satisfactory grade unless granted an

exception in writing by the course’s heads.

Getting Started

Recall that CS50 IDE is a web-based "integrated development environment" that allows

you to program "in the cloud," without installing any software locally. Underneath the

hood is a popular operating system, Ubuntu Linux, that’s been "containerized" with open-

source software called Docker, that allows multiple users (like you!) to share the operating

system’s "kernel" (its nucleus, so to speak) and files, even while having files of their own.

Indeed, CS50 IDE provides you with your very own "workspace" (i.e., storage space) in

which you can save your own files and folders (aka directories). Anyhow, more on all that

another time!

Logging In

Head to cs50.io1 and log into CS50 IDE. Upon logging in for the very first time, you should

be informed that CS50 IDE (aka Cloud9, the software that underlies CS50 IDE) is "creating

your workspace" and "creating your container," which might take a moment. (If you already

have an account at c9.io, which is Cloud9’s own site, drop sysadmins@cs50.harvard.edu2

a note, and we’ll let you know how to "link" that account.)

Once you see your workspace, which should resemble mine from Week 1, close any tabs

that might have been opened for you by default (e.g., Welcome and README.md). Then

decide which "theme" you’d like. By default, CS50 IDE is configured with a theme called

"Cloud9 Day." If you’d prefer a darker theme, particularly at night, visit Support > Welcome

1 https://cs50.io/
2 mailto:sysadmins@cs50.harvard.edu

https://cs50.io/
mailto:sysadmins@cs50.harvard.edu
https://cs50.io/
mailto:sysadmins@cs50.harvard.edu

Problem Set 1: C

6

Page, which should open a Welcome tab, and then, within that tab, change Main Theme

to Cloud9 Classic Dark Theme, and then close the tab. Feel free to poke around other

menus as well to get a sense of CS50 IDE’s user interface (UI). No worries if you’re not

sure what most of the menus do (yet!). If among those more comfortable or just curious,

feel free to uncheck View > Less Comfortable, which will reveal even more options.

Updating

Toward the bottom of CS50 IDE’s UI is a "terminal window" (in a tab called Terminal),

a command-line interface (CLI) that allows you to explore your workspace’s files and

directories, compile code, run programs, and even install new software. You should find

that its "prompt" looks like

username@ide50:~/workspace $

where username is your own (automatically assigned) username. Click inside of that

terminal window and then type

update50

followed by Enter to ensure that your workspace is up-to-date. It should take just a few

moments for any updates to complete. (Be sure not to close the tab or CS50 IDE itself

until they do!)

Hello

Okay, let’s create a folder in which your code for this problem set will soon live. Toward

CS50 IDE’s top-left corner, control-click or right-click ide50, your workspace’s "root", and

select New Folder. A new folder called New Folder should appear; rename it pset1, then

hit Enter. (If you misname it or can’t seem to edit its name, control-click or right-click the

new folder and select Rename to try again!)

Next, control-click or right-click that pset1 folder that you just created and select New File.

A new file called Untilted should appear; rename it hello.txt and then hit Enter. (If you

misname it or can’t seem to edit its name, control-click or right-click the new file and select

Rename to try again!) You should see that hello.txt is indented immediately beneath

Problem Set 1: C

7

pset1, which indicates that the former is inside of the latter. If hello.txt doesn’t appear to

be inside of pset1, simply drag and drop the former into the latter.

Double-click hello.txt, and a new tab should appear within CS50 IDE via which you can

edit the file. Go ahead and type something simple (e.g., hello or the ever-popular

asdf). Notice that an asterisk () should then appear atop the tab, to the left of the tab’s

name. That asterisk indicates that your file has changed but not yet been saved. Go

ahead and save the file via *File > Save or, more quickly, via command-S (on Macs) or

control-S (on PCs). The asterisk should disappear.

Okay, now let’s confirm via your terminal window that the file is indeed where it should be

and start to familiarize you with that terminal window’s command-line interface. As before,

your terminal window’s prompt should be

username@ide50:~/workspace $

by default, where username is, again, your assigned username. The prompt further

indicates that ide50 is the name of your (automatically created) workspace. And it

indicates that workspace is the name of your "current working directory" (i.e., the folder

that’s currently open within that command-line environment). The tilde (~), meanwhile,

refers to your account’s "home directory," in which your workspace directory lives, but

more on that another time. Note that this workspace directory is identical to that ide50

icon in CS50 IDE’s top-left corner (inside of which you created pset1 earlier). A better

choice of names for the latter would have been, well, workspace; we’ll fix that soon!

Okay, let’s poke around. Again click somewhere inside of that terminal window and then

type

ls

followed by Enter. That’s a lowercase L and a lowercase S, which is shorthand notation

for "list." Indeed, you should then see a list of the folders inside of your workspace, among

which is pset1 ! Let’s open that folder. Type

cd pset1

or even, more verbosely,

Problem Set 1: C

8

cd ~/workspace/pset1

followed by Enter to change your directory to ~/pset1 (ergo, cd). You should find that

your prompt changes to

username@ide50:~/workspace/pset1 $

confirming that you are indeed now inside of ~/workspace/pset1 (i.e., a directory

called pset1 inside of a directory called workspace inside of your home directory).

Now type

ls

followed by Enter. You should see hello.txt ! Now, you can’t click or double-click on

that file’s name there; it’s just text. But that listing does confirm that hello.txt is where

we hoped it would be. (If not, take another stab at these steps or simply ask classmates

or staff for some help!)

Let’s poke around a bit more. Go ahead and type

cd

and then Enter. If you don’t provide cd with a "command-line argument" (i.e., a directory’s

name), it whisks you back to your home directory by default. Indeed, your prompt should

now be:

username@ide50:~ $

To get back into pset1 , type

cd workspace

and then Enter followed by

cd pset1

Problem Set 1: C

9

and then Enter. Alternatively, you can combine both steps into one by typing

cd workspace/pset1

followed by Enter. Phew. Make sense? If not, no worries; it soon will! It’s in this terminal

window that you’ll soon be compiling your first program!

Hello, C

First, a hello from Zamyla if you’d like a tour of what’s to come, particularly if less

comfortable. Note that she’s using the CS50 Appliance, the (non-web-based) predecessor

of CS50 IDE, but not a problem. Any code she writes within the CS50 Appliance should

work the same within CS50 IDE!

https://www.youtube.com/watch?v=HkQD6aw7oDc

Shall we have you write your first program? Inside of your pset1 folder, create a new file

called hello.c, and then open that file in a tab. (Remember how?) Be sure to capitalize

the file’s name just as we have; files' and folders' names in Linux are "case-sensitive."

Proceed to write your first program by typing precisely these lines into the file:

#include <stdio.h>

int main(void)

{

 printf("hello, world\n");

}

Notice how CS50 IDE adds "syntax highlighting" (i.e., color) as you type. Those colors

aren’t actually saved inside of the file itself; they’re just added by CS50 IDE to make

certain syntax stand out. Had you not saved the file as hello.c from the start, CS50

IDE wouldn’t know (per the filename’s extension) that you’re writing C code, in which case

those colors would be absent.

Do be sure that you type in this program just right, else you’re about to experience your

first bug! In particular, capitalization matters, so don’t accidentally capitalize words (unless

they’re between those two quotes). And don’t overlook that one semicolon. C is quite

nitpicky!

https://www.youtube.com/watch?v=HkQD6aw7oDc

Problem Set 1: C

10

When done typing, select File > Save (or hit command- or control-s), but don’t quit. Recall

that the leading asterisk in the tab’s name should then disappear. Click anywhere in the

terminal window beneath your code, and be sure that you’re inside of ~/workspace/

pset1 . (Remember how? If not, type cd and then Enter, followed by cd workspace/

pset1 and then Enter.) Your prompt should be:

username@ide50:~/workspace/pset1 $

Let’s confirm that hello.c is indeed where it should be. Type

ls

followed by Enter, and you should see both hello.c and hello.txt ? If not, no

worries; you probably just missed a small step. Best to restart these past several steps

or ask for help!

Assuming you indeed see hello.c , let’s try to compile! Cross your fingers and then type

make hello

at the prompt, followed by Enter. (Well, maybe don’t cross your fingers whilst typing.) To

be clear, type only hello here, not hello.c . If all that you see is another, identical

prompt, that means it worked! Your source code has been translated to object code (0s

and 1s) that you can now execute. Type

./hello

at your prompt, followed by Enter, and you should see the below:

hello, world

And if you type

ls

Problem Set 1: C

11

followed by Enter, you should see a new file, hello , alongside hello.c and

hello.txt . The first of those files, hello , should have an asterisk after its name that,

in this context, means it’s "executable," a program that you can execute (i.e., run).

If, though, upon running make , you instead see some error(s), it’s time to debug! (If the

terminal window’s too small to see everything, click and drag its top border upward to

increase its height.) If you see an error like expected declaration or something no less

mysterious, odds are you made a syntax error (i.e., typo) by omitting some character or

adding something in the wrong place. Scour your code for any differences vis-à-vis the

template above. It’s easy to miss the slightest of things when learning to program, so do

compare your code against ours character by character; odds are the mistake(s) will jump

out! Anytime you make changes to your own code, just remember to re-save via File >

Save (or command- or control-s), then re-click inside of the terminal window, and then

re-type

make hello

at your prompt, followed by Enter. (Just be sure that you are inside of ~/workspace/

pset1 within your terminal window, as your prompt will confirm or deny.) If you see no

more errors, try running your program by typing

./hello

at your prompt, followed by Enter! Hopefully you now see whatever you told printf to

print?

If not, reach out for help! Incidentally, if you find the terminal window too small for your

tastes, know that you can open one in a bigger tab by clicking the circled plus (+) icon to

the right of your hello.c tab.

Woo hoo! You’ve begun to program!

CS50 Check

Now let’s see if the program you just wrote is correct! Included in CS50 IDE is check50 ,

a command-line program with which you can check the correctness of (some of) your

programs.

Problem Set 1: C

12

If not already there, navigate your way to ~/workspace/pset1 by executing the

command below.

cd ~/workspace/pset1

If you then execute

ls

you should see, at least, hello.c . Be sure it’s indeed spelled hello.c and not

Hello.c , hello.C , or the like. If it’s not, know that you can rename a file by executing

mv source destination

where source is the file’s current name, and destination is the file’s new name. For

instance, if you accidentally named your program Hello.c , you could fix it as follows.

mv Hello.c hello.c

Okay, assuming your file’s name is definitely spelled hello.c now, go ahead and

execute the below. Note that 2015.fall.pset1.hello is just a unique identifier for

this problem’s checks.

check50 2015.fall.pset1.hello hello.c

Assuming your program is correct, you should then see output like

:) hello.c exists

:) hello.c compiles

:) prints "hello, world\n"

where each green smiley means your program passed a check (i.e., test). You may also

see a URL at the bottom of check50 's output, but that’s just for staff (though you’re

welcome to visit it).

Problem Set 1: C

13

If you instead see yellow or red smileys, it means your code isn’t correct! For instance,

suppose you instead see the below.

:(hello.c exists

 \ expected hello.c to exist

:| hello.c compiles

 \ can't check until a frown turns upside down

:| prints "hello, world\n"

 \ can't check until a frown turns upside down

Because check50 doesn’t think hello.c exists, as per the red smiley, odds are you

uploaded the wrong file or misnamed your file. The other smileys, meanwhile, are yellow

because those checks are dependent on hello.c existing, and so they weren’t even run.

Suppose instead you see the below.

:) hello.c exists

:) hello.c compiles

:(prints "hello, world\n"

 \ expected output, but not "hello, world"

Odds are, in this case, you printed something other than hello, world\n verbatim, per

the spec’s expectations. In particular, the above suggests you printed hello, world ,

without a trailing newline (\n).

Know that check50 won’t actually record your scores in CS50’s gradebook. Rather, it

lets you check your work’s correctness before you submit your work. Once you actually

submit your work (per the directions at this spec’s end), CS50’s staff will use check50

to evaluate your work’s correctness officially.

Shorts

Curl up with Nate’s short on libraries and at least two other shorts for this week.

https://www.youtube.com/watch?

v=ED7QtgXDShY&list=PLhQjrBD2T381NKQHUCTezeyCYzbnN4GjC

Be sure you’re reasonably comfortable answering the below when it comes time to submit

this problem set’s form!

https://www.youtube.com/watch?v=ED7QtgXDShY&list=PLhQjrBD2T381NKQHUCTezeyCYzbnN4GjC
https://www.youtube.com/watch?v=ED7QtgXDShY&list=PLhQjrBD2T381NKQHUCTezeyCYzbnN4GjC

Problem Set 1: C

14

• What’s a library?

• What role does

#include <cs50.h>

play when you write it atop some program?

• What role does

-lcs50

play when you pass it as a "command-line argument" to clang ? (Recall that make ,

the program we’ve been using to compile programs in lecture, simply calls clang with

some command-line arguments for you to save you some keystrokes.)

Hello again, C

Before forging ahead, you might want to review some of the examples that we looked at

in Week 1’s lectures and take a look at a few more, the "source code" for which can be

found under Lectures on the course’s website. Allow me to take you on a tour, though

feel free to forge ahead on your own if you’d prefer. (My CS50 Appliance will look a bit

different from CS50 IDE, but not to worry.)

https://www.youtube.com/watch?

v=bQnyxpf0vk0&list=PLhQjrBD2T383fi16gN97XlrTwdxDq2QWZ

Smart Water

Suffice it to say that the longer you shower, the more water you use. But just how much?

Even if you have a "low-flow" showerhead, odds are your shower spits out 1.5 gallons of

water per minute. A gallon, meanwhile, is 128 ounces, and so that shower spits out 1.5 ×

128 = 192 ounces of water per minute. A typical bottle of water (that you might have for a

drink, not a shower), meanwhile, might be 16 ounces. So taking a 1-minute shower is akin

to using 192 ÷ 16 = 12 bottles of water. Taking (more realistically, perhaps!) a 10-minute

shower, then, is like using 120 bottles of water. Deer Park, that’s a lot of water! Of course,

bottled water itself is wasteful; best to use reusable containers when you can! But it does

put into perspective what’s being spent in a shower!

https://www.youtube.com/watch?v=bQnyxpf0vk0&list=PLhQjrBD2T383fi16gN97XlrTwdxDq2QWZ
https://www.youtube.com/watch?v=bQnyxpf0vk0&list=PLhQjrBD2T383fi16gN97XlrTwdxDq2QWZ

Problem Set 1: C

15

Write, in a file called water.c in your ~/workspace/pset1 directory, a program that

prompts the user for the length of his or her shower in minutes (as a positive integer) and

then prints the equivalent number of bottles of water (as an integer) per the sample output

below, wherein underlined text represents some user’s input.

username@ide50:~/workspace/pset1 $./water

minutes: 10

bottles: 120

For simplicity, you may assume that the user will input a positive integer, so no need for

error-checking (or any loops) this time! And no need to worry about overflow!

If you’d like to check the correctness of your program with check50 , you may execute

the below.

check50 2015.fall.pset1.water water.c

Problem Set 1: C

16

And if you’d like to play with the staff’s own implementation of water within CS50 IDE,

you may execute the below.

~cs50/pset1/water

Itsa Mario

Toward the end of World 1-1 in Nintendo’s Super Mario Brothers, Mario must ascend a

"half-pyramid" of blocks before leaping (if he wants to maximize his score) toward a flag

pole. Below is a screenshot.

Write, in a file called mario.c in your ~/workspace/pset1 directory, a program that

recreates this half-pyramid using hashes (#) for blocks. However, to make things more

interesting, first prompt the user for the half-pyramid’s height, a non-negative integer no

greater than 23 . (The height of the half-pyramid pictured above happens to be 8 .) If the

user fails to provide a non-negative integer no greater than 23 , you should re-prompt

for the same again. Then, generate (with the help of printf and one or more loops)

the desired half-pyramid. Take care to align the bottom-left corner of your half-pyramid

with the left-hand edge of your terminal window, as in the sample output below, wherein

underlined text represents some user’s input.

Problem Set 1: C

17

username@ide50:~/workspace/pset1 $./mario

height: 8

 ##

 ###

 ####

 #####

 ######

 #######

 ########

#########

Note that the rightmost two columns of blocks must be of the same height. No need to

generate the pipe, clouds, numbers, text, or Mario himself.

By contrast, if the user fails to provide a non-negative integer no greater than 23 ,

your program’s output should instead resemble the below, wherein underlined text again

represents some user’s input. (Recall that GetInt will handle some, but not all, re-

prompting for you.)

username@ide50:~/workspace/pset1 $./mario

Height: -2

Height: -1

Height: foo

Retry: bar

Retry: 1

##

To compile your program, remember that you can execute

make mario

or, more manually,

clang -o mario mario.c -lcs50

after which you can run your program with the below.

./mario

Problem Set 1: C

18

If you’d like to check the correctness of your program with check50 , you may execute

the below.

check50 2015.fall.pset1.mario mario.c

And if you’d like to play with the staff’s own implementation of mario within CS50 IDE,

you may execute the below.

~cs50/pset1/mario

Not sure where to begin? Not to worry. A walkthrough awaits!

https://www.youtube.com/watch?v=z32BxNe2Sfc

Time for Change

Speaking of money, here’s "a great way to store change and teach children to add it up.

With the press of the lever, the coin changer releases coins on demand. Slots allow you

to slide this great toy onto your belt."

https://www.youtube.com/watch?v=z32BxNe2Sfc

Problem Set 1: C

19

Of course, the novelty of this thing quickly wears off, especially when someone pays for a

newspaper with a big bill. Fortunately, computer science has given cashiers everywhere

ways to minimize numbers of coins due: greedy algorithms.

According to the National Institute of Standards and Technology (NIST), a greedy

algorithm3 is one "that always takes the best immediate, or local, solution while finding

an answer. Greedy algorithms find the overall, or globally, optimal solution for some

optimization problems, but may find less-than-optimal solutions for some instances of other

problems."

What’s all that mean? Well, suppose that a cashier owes a customer some change and on

that cashier’s belt are levers that dispense quarters, dimes, nickels, and pennies. Solving

this "problem" requires one or more presses of one or more levers. Think of a "greedy"

cashier as one who wants to take, with each press, the biggest bite out of this problem as

3 http://www.nist.gov/dads/HTML/greedyalgo.html

http://www.nist.gov/dads/HTML/greedyalgo.html
http://www.nist.gov/dads/HTML/greedyalgo.html
http://www.nist.gov/dads/HTML/greedyalgo.html

Problem Set 1: C

20

possible. For instance, if some customer is owed 41¢, the biggest first (i.e., best immediate,

or local) bite that can be taken is 25¢. (That bite is "best" inasmuch as it gets us closer to

0¢ faster than any other coin would.) Note that a bite of this size would whittle what was a

41¢ problem down to a 16¢ problem, since 41 - 25 = 16. That is, the remainder is a similar

but smaller problem. Needless to say, another 25¢ bite would be too big (assuming the

cashier prefers not to lose money), and so our greedy cashier would move on to a bite of

size 10¢, leaving him or her with a 6¢ problem. At that point, greed calls for one 5¢ bite

followed by one 1¢ bite, at which point the problem is solved. The customer receives one

quarter, one dime, one nickel, and one penny: four coins in total.

It turns out that this greedy approach (i.e., algorithm) is not only locally optimal but also

globally so for America’s currency (and also the European Union’s). That is, so long as

a cashier has enough of each coin, this largest-to-smallest approach will yield the fewest

coins possible.

How few? Well, you tell us. Write, in a file called greedy.c in your ~/workspace/

pset1 directory, a program that first asks the user how much change is owed and

then spits out the minimum number of coins with which said change can be made. Use

GetFloat from the CS50 Library to get the user’s input and printf from the Standard

I/O library to output your answer. Assume that the only coins available are quarters (25¢),

dimes (10¢), nickels (5¢), and pennies (1¢).

We ask that you use GetFloat so that you can handle dollars and cents, albeit sans

dollar sign. In other words, if some customer is owed $9.75 (as in the case where a

newspaper costs 25¢ but the customer pays with a $10 bill), assume that your program’s

input will be 9.75 and not $9.75 or 975 . However, if some customer is owed $9

exactly, assume that your program’s input will be 9.00 or just 9 but, again, not $9

or 900 . Of course, by nature of floating-point values, your program will likely work with

inputs like 9.0 and 9.000 as well; you need not worry about checking whether the

user’s input is "formatted" like money should be. And you need not try to check whether

a user’s input is too large to fit in a float . But you should check that the user’s input

makes cents! Er, sense. Using GetFloat alone will ensure that the user’s input is indeed

a floating-point (or integral) value but not that it is non-negative. If the user fails to provide

a non-negative value, your program should re-prompt the user for a valid amount again

and again until the user complies.

Problem Set 1: C

21

Incidentally, do beware the inherent imprecision of floating-point values. For instance,

0.01 cannot be represented exactly as a float. Try printing its value to, say, 50 decimal

places, with code like the below:

float f = 0.01;

printf("%.50f\n", f);

Before doing any math, then, you’ll probably want to convert the user’s input entirely to

cents (i.e., from a float to an int) to avoid tiny errors that might otherwise add up!

Of course, don’t just cast the user’s input from a float to an int ! After all, how many

cents does one dollar equal? And be careful to round4 and not truncate your pennies!

Not sure where to begin? Not to worry, start with a walkthrough:

https://www.youtube.com/watch?v=9dZzyl7dCuw

Incidentally, so that we can automate some tests of your code, we ask that your program’s

last line of output be only the minimum number of coins possible: an integer followed by

\n . Consider the below representative of how your own program should behave, wherein

underlined text is some user’s input.

username@ide50:~/workspace/pset1 $./greedy

O hai! How much change is owed?

0.41

4

By nature of floating-point values, that user could also have inputted just .41 . (Were they

to input 41 , though, they’d get many more coins!)

Of course, more difficult users might experience something more like the below.

username@ide50:~/workspace/pset1 $./greedy

O hai! How much change is owed?

-0.41

How much change is owed?

-0.41

How much change is owed?

4 https://cs50.harvard.edu/resources/cppreference.com/stdmath/round.html

https://cs50.harvard.edu/resources/cppreference.com/stdmath/round.html
https://www.youtube.com/watch?v=9dZzyl7dCuw
https://cs50.harvard.edu/resources/cppreference.com/stdmath/round.html

Problem Set 1: C

22

foo

Retry: 0.41

4

Per these requirements (and the sample above), your code will likely have some sort of

loop. If, while testing your program, you find yourself looping forever, know that you can

kill your program (i.e., short-circuit its execution) by hitting ctrl-c (sometimes a lot).

We leave it to you to determine how to compile and run this particular program!

If you’d like to check the correctness of your program with check50 , you may execute

the below.

check50 2015.fall.pset1.greedy greedy.c

And if you’d like to play with the staff’s own implementation of greedy within CS50 IDE,

you may execute the below.

~cs50/pset1/greedy

How to Submit

Step 1 of 2

1. When ready to submit, log into CS50 IDE5.

2. Toward CS50 IDE’s top-left corner, within its "file browser" (not within a terminal

window), control-click or right-click your hello.c file (that’s within your pset1

directory) and then select Download. You should find that your browser has

downloaded hello.c .

3. Repeat for water.c .

4. Repeat for mario.c .

5. Repeat for greedy.c .

6. In a separate tab or window, log into CS50 Submit6, logging in if prompted.

5 https://cs50.io/
6 https://cs50.harvard.edu/submit

https://cs50.io/
https://cs50.harvard.edu/submit
https://cs50.io/
https://cs50.harvard.edu/submit

Problem Set 1: C

23

7. Click Submit toward the window’s top-left corner.

8. Under Problem Set 1 on the screen that appears, click Upload New Submission.

9. On the screen that appears, click Add files…. A window entitled Open Files should

appear.

10.Navigate your way to hello.c . Odds are it’s in your Downloads folder or wherever

your browser downloads files by default. Once you find hello.c , click it once to

select it, then click Open (or the like).

11.Click Add files… again, and a window entitled Open Files should appear again.

12.Navigate your way to water.c as before. Click it once to select it, then click Open

(or the like).

13.Navigate your way to mario.c as before. Click it once to select it, then click Open

(or the like).

14.Navigate your way to greedy.c as before. Click it once to select it, then click Open

(or the like).

15.Click Start upload to upload all of your files at once to CS50’s servers.

16.On the screen that appears, you should see a window with No File Selected. If you

move your mouse toward the window’s lefthand side, you should see a list of the files

you uploaded. Click each to confirm the contents of each. (No need to click any other

buttons or icons.) If confident that you submitted the files you intended, consider your

source code submitted! If you’d like to re-submit different (or modified) files, simply

return to CS50 Submit7 and repeat these steps. You may re-submit as many times as

you’d like; we’ll grade your most recent submission, so long as it’s before the deadline.

Step 2 of 2

Head to https://forms.cs50.net/2015/fall/psets/1/ where a short form awaits. Once you

have submitted that form (as well as your source code), you are done! If you end up

resubmitting your files (per step 1 of 1), no need to resubmit the form.

This was Problem Set 1.

7 https://cs50.harvard.edu/submit

https://cs50.harvard.edu/submit
https://forms.cs50.net/2015/fall/psets/1/
https://cs50.harvard.edu/submit

	Problem Set 1: C
	Table of Contents
	Objectives
	Recommended Reading
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Getting Started
	Logging In
	Updating
	Hello

	Hello, C
	CS50 Check
	Shorts
	Hello again, C
	Smart Water
	Itsa Mario
	Time for Change
	How to Submit
	Step 1 of 2
	Step 2 of 2

