
1

Problem Set 2: Crypto

This is CS50. Harvard University. Fall 2015.

Table of Contents

Objectives ... 1

Recommended Reading ... 1

diff pset2 hacker2 .. 2

Academic Honesty ... 2

Reasonable ... 2

Not Reasonable .. 3

Assessment .. 4

Getting Ready .. 5

Getting Started ... 5

Initializing .. 7

Passwords Et Cetera ... 8

How to Submit ... 11

Step 1 of 2 .. 11

Step 2 of 2 .. 12

Questions? Head to CS50 Discuss1 or join classmates at office hours2!

Objectives

• Become better acquainted with functions and libraries.

• Dabble in cryptanalysis.

Recommended Reading

• Pages 11 – 14 and 39 of http://www.howstuffworks.com/c.htm.

• Chapters 7, 8, and 10 of Programming in C.

1 https://cs50.net/discuss
2 https://cs50.net/hours

https://cs50.net/discuss
https://cs50.net/hours
http://www.howstuffworks.com/c.htm
https://cs50.net/discuss
https://cs50.net/hours

Problem Set 2: Crypto

2

diff pset2 hacker2

• Hacker Edition challenges you to handle extra whitespace in inputs.

• Hacker Edition challenges you to crack actual passwords.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on

quizzes is not permitted at all. Collaboration on the course’s final project is permitted to

the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly. If the course refers some

matter for disciplinary action and the outcome is punitive, the course reserves the right to

impose local sanctions on top of that outcome that may include an unsatisfactory or failing

grade for work submitted or for the course itself.

If you commit some act that is not reasonable but bring it to the attention of the course’s

heads within 72 hours, the course may impose local sanctions that may include an

unsatisfactory or failing grade for work submitted, but the course will not refer the matter

for further disciplinary action except in cases of repeated acts.

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

Problem Set 2: Crypto

3

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at office hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

Problem Set 2: Crypto

4

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

All students, whether or not taking the course for a letter grade, must ordinarily submit

this and all other problem sets to be eligible for a satisfactory grade unless granted an

exception in writing by the course’s heads.

Problem Set 2: Crypto

5

Getting Ready

First, curl up with the below shorts on loops, functions, Caesar’s cipher, and command-

line arguments. If you happen to see (and are confused by!) char * in these and other

shorts, know for now that char * simply means string . But more on that soon!

https://www.youtube.com/watch?v=HHmiHx7GGLE

Be sure you’re reasonably comfortable answering the below when it comes time to submit

this problem set’s form!

• How does a while loop differ from a do-while loop? When is the latter particularly useful?

• What does undeclared identifier usually indicate if outputted by make (or,

really, clang)?

• Why is Caesar’s cipher not very secure?

• What’s a function?

• Why bother writing functions when you can just copy and paste code as needed?

Next, take a self-paced tour through Week 2’s examples, the source code for which can be

found at http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/ and http://cdn.cs50.net/2015/

fall/lectures/2/w/src2w/, fast-forwarding through any programs with which you’re already

comfortable:

https://www.youtube.com/watch?v=1VbHJz2L6dM&list=PLhQjrBD2T380sc-fXwl1sviA-

twxFduVU

You might also find these shorts on arrays, return values, and Vigenère’s cipher of interest

as well!

https://www.youtube.com/watch?v=7mOJN1c1JEo

Getting Started

Alright, here we go again!

Log into cs50.io3 and execute

3 https://cs50.io/

https://www.youtube.com/watch?v=HHmiHx7GGLE
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/
http://cdn.cs50.net/2015/fall/lectures/2/w/src2w/
http://cdn.cs50.net/2015/fall/lectures/2/w/src2w/
https://www.youtube.com/watch?v=1VbHJz2L6dM&list=PLhQjrBD2T380sc-fXwl1sviA-twxFduVU
https://www.youtube.com/watch?v=1VbHJz2L6dM&list=PLhQjrBD2T380sc-fXwl1sviA-twxFduVU
https://www.youtube.com/watch?v=7mOJN1c1JEo
https://cs50.io/
https://cs50.io/

Problem Set 2: Crypto

6

update50

within a terminal window to make sure your workspace is up-to-date. If you somehow

closed your terminal window (and can’t find it!), make sure that Console is checked under

the View menu, then click the green, circled plus (+) in CS50 IDE’s bottom half, then select

New Terminal. If you need a hand, do just ask via CS50 Discuss4!

Next, execute

mkdir ~/workspace/hacker2

at your prompt in order to make a directory called hacker2 in your workspace

directory. Take care not to overlook the space between mkdir and ~/workspace/

hacker2 or any other character for that matter! Keep in mind that ~ denotes your

home directory, ~/workspace denotes a directory called workspace therein, and ~/

workspace/hacker2 denotes a directory called hacker2 within ~/workspace .

Now execute

cd ~/workspace/hacker2

to move yourself into (i.e., open) that directory. Your prompt should now resemble the

below.

username@ide50:~/workspace/hacker2 $

If not, retrace your steps and see if you can determine where you went wrong. You can

actually execute

history

at the prompt to see your last several commands in chronological order if you’d like to do

some sleuthing. You can also scroll through the same one line at a time by hitting your

4 https://cs50.net/discuss

https://cs50.net/discuss
https://cs50.net/discuss

Problem Set 2: Crypto

7

keyboard’s up and down arrows; hit Enter to re-execute any command that you’d like. If

still unsure how to fix, remember that CS50 Discuss5 is your friend!

All of the work that you do for this problem set must ultimately reside in your hacker2

directory for submission.

Initializing

Alright, let’s get more comfortable with string (aka, char * , as we’ll eventually see).

Write, in a file called initials.c , a program that prompts a user for their name

(using GetString to obtain their name as a string) and then outputs their initials in

uppercase with no spaces or periods, followed by a newline (\n) and nothing more. You

may assume that the user’s input will contain only letters (uppercase and/or lowercase)

plus spaces. Folks like Joseph Gordon-Levitt , Conan O’Brien , and David J.

Malan won’t be using your program. But the user’s input might be sloppy, in which case

there might be one or more spaces at the start and/or end of the user’s input or even

multiple spaces in a row.

So that we can automate some tests of your code, your program must behave per the

examples below. Assumed that the underlined text is what some user has typed.

username@ide50:~/workspace/hacker2 $./initials

Zamyla Chan

ZC

username@ide50:~/workspace/hacker2 $./initials

 robert thomas bowden

RTB

If you’d like to check the correctness of your program with check50 , you may execute

the below.

check50 2015.fall.hacker2.initials initials.c

And if you’d like to play with the staff’s own implementation of initials , you may

execute the below.

5 https://cs50.net/discuss

https://cs50.net/discuss
https://cs50.net/discuss

Problem Set 2: Crypto

8

~cs50/hacker2/initials

Passwords Et Cetera

On most, if not all, systems running Linux or UNIX is a file called /etc/passwd . By

design, this file is meant to contain usernames and passwords, along with other account-

related details (e.g., paths to users' home directories and shells). Also by (poor) design,

this file is typically world-readable. Thankfully, the passwords therein aren’t stored "in the

clear" but are instead encrypted using a "one-way hash function." When a user logs into

these systems by typing a username and password, the latter is encrypted with the very

same hash function, and the result is compared against the username’s entry in /etc/

passwd . If the two ciphertexts match, the user is allowed in. If you’ve ever forgotten some

password, you may have been told that "I can’t look up your password, but I can change

it for you." It could be that person doesn’t know how. But, odds are they just can’t if a one-

way hash function’s involved.

Even though passwords in /etc/passwd are encrypted, the crypto involved is not

terribly strong. Quite often are adversaries, upon obtaining files like this one, able to

guess (and check) users' passwords or crack them using brute force (i.e., trying all

possible passwords). Only in recent years have (most) system administrators stopped

storing passwords in /etc/passwd , instead using /etc/shadow , which is (supposed

to be) readable only by root . (Take a look at /etc/passwd in CS50 IDE, for

instance; wherever you see x a password once was.) Below, though, are some

username:ciphertext pairs6 from an outdated (fake) system.

andi:HALRCq0IBXEPM

caesar:50zPJlUFIYY0o

eli:50MxVjGD7EfY6

hdan:50z2Htq2DN2qs

jason:50CMVwEqJXRUY

john:50TGdEyijNDNY

levatich:50QykIulIPuKI

rob:50q.zrL5e0Sak

skroob:50Bpa7n/23iug

zamyla:HAYRs6vZAb4wo

6 http://cdn.cs50.net/2015/fall/psets/2/hacker2/passwd

http://cdn.cs50.net/2015/fall/psets/2/hacker2/passwd
http://cdn.cs50.net/2015/fall/psets/2/hacker2/passwd

Problem Set 2: Crypto

9

Crack these passwords, each of which has been encrypted with C’s DES-based (not MD5-

based) crypt function. Specifically, write, in crack.c , a program that accepts a single

command-line argument: an encrypted password. (In case you test your code with other

ciphertexts, know that command-line arguments with certain characters (e.g., ?) must

be enclosed in single or double quotes; those quotation marks will not end up in argv

itself.) If your program is executed without any command-line arguments or with more

than one command-line argument, your program should complain and exit immediately,

with main returning any non-zero int (thereby signifying an error that our own tests

can detect). Otherwise, your program must proceed to crack the given password, ideally

as quickly as possible, ultimately printing to standard output the password in the clear

followed by \n , nothing more, nothing less, with main returning 0 . The underlying

design of this program is entirely up to you, but you must explain each and every one

of your design decisions, including any implications for performance and accuracy, with

profuse comments throughout your source code. Your program must be designed in such

a way that it could crack all of the passwords above, even if said cracking might take quite

a while. That is to say, it’s okay if your code might take several minutes or days or longer

to run. What we demand of you is correctness, not necessarily optimal performance. Your

program should certainly work on inputs other than these as well; hard-coding into your

program the solutions to the above is not acceptable.

Your program must behave per the below; underlined is some sample input.

username@ide50:~/workspace/hacker2 $ [underline]#./crack 50Bpa7n/23iug

12345

Assume that users' passwords, as plaintext, are composed of printable ASCII characters7

and are no longer than eight characters long. As for their ciphertexts, you’d best pull up

the "man page" (i.e., manual) for crypt by executing

man crypt

in a terminal window so that you know how the function works. In particular, make sure

you understand its use of a "salt." (According to the man page, a salt "is used to perturb

7 http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

Problem Set 2: Crypto

10

the algorithm in one of 4096 different ways," but why might that be useful?) As implied by

that man page, you’ll likely want to put

#define _XOPEN_SOURCE

#include <unistd.h>

at the top of your file. Moreover, you’ll want to link with -lcrypt , as by compiling not

with make but with:

clang -o crack crack.c -lcrypt

You might also want to read up on C’s support for file I/O, as there’s quite a number of

English words in /usr/share/dict/words in CS50 IDE that might (or might not) save

your program some time. If that file seems to be missing, you can install it with:

sudo apt-get install -y wamerican

By design, /etc/passwd entrusts the security of passwords to an assumption: that

adversaries lack the computational resources with which to crack those passwords. Once

upon a time, that may have been true. Perhaps some still do. But when it comes to security,

assumptions are dangerous. May that this problem set make that claim all the more real.

We should note that this problem set is no invitation to seek out other passwords to crack.

Do not conflate these Hacker Editions with "black hat" editions. We hope, though, that

by understanding better the design of today’s systems, you might one day build better

systems yourself. Besides acquainting you further with C, this problem set urges you to

start questioning designs, as vulnerabilities (if not regrets) often result from poor ones.

If you’d like to play with the staff’s own implementation of crack , well, sorry! :-) Where’d

be the fun in that?

Problem Set 2: Crypto

11

How to Submit

Step 1 of 2

1. When ready to submit, log into CS50 IDE8.

2. Toward CS50 IDE’s top-left corner, within its "file browser" (not within a terminal

window), control-click or right-click your initials.c file (that’s within your pset2

directory) and then select Download. You should find that your browser has

downloaded initials.c .

3. Repeat for crack.c .

4. If crack.c relies on any additional files, proceed to download those as well.

5. In a separate tab or window, log into CS50 Submit9, logging in if prompted.

6. Click Submit toward the window’s top-left corner.

7. Under Problem Set 2 on the screen that appears, click Upload New Submission.

8. On the screen that appears, click Add files…. A window entitled Open Files should

appear.

9. Navigate your way to initials.c . Odds are it’s in your Downloads folder or

wherever your browser downloads files by default. Once you find initials.c , click

it once to select it, then click Open (or the like).

10.Click Add files… again, and a window entitled Open Files should appear again.

11.Navigate your way to crack.c as before. Click it once to select it, then click Open

(or the like).

12.If crack.c relies on any additional files, proceed to prepare those as well for upload.

13.Click Start upload to upload all of your files at once to CS50’s servers.

14.On the screen that appears, you should see a window with No File Selected. If you

move your mouse toward the window’s lefthand side, you should see a list of the files

you uploaded. Click each to confirm the contents of each. (No need to click any other

buttons or icons.) If confident that you submitted the files you intended, consider your

source code submitted! If you’d like to re-submit different (or modified) files, simply

8 https://cs50.io/
9 https://cs50.harvard.edu/submit

https://cs50.io/
https://cs50.harvard.edu/submit
https://cs50.io/
https://cs50.harvard.edu/submit

Problem Set 2: Crypto

12

return to CS50 Submit10 and repeat these steps. You may re-submit as many times as

you’d like; we’ll grade your most recent submission, so long as it’s before the deadline.

Step 2 of 2

Head to https://forms.cs50.net/2015/fall/psets/2/ where a short form awaits. Once you

have submitted that form (as well as your source code), you are done! If you end up

resubmitting your files (per step 1 of 1), no need to resubmit the form.

This was Problem Set 2.

10 https://cs50.harvard.edu/submit

https://cs50.harvard.edu/submit
https://forms.cs50.net/2015/fall/psets/2/
https://cs50.harvard.edu/submit

	Problem Set 2: Crypto
	Table of Contents
	Objectives
	Recommended Reading
	diff pset2 hacker2
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Getting Ready
	Getting Started
	Initializing
	Passwords Et Cetera
	How to Submit
	Step 1 of 2
	Step 2 of 2

