
1

Problem Set 2: Crypto

This is CS50. Harvard University. Fall 2015.

Table of Contents

Objectives ....................................................................................................................... 1

Recommended Reading ................................................................................................. 1

Academic Honesty .........................................................................................................  2

Reasonable .............................................................................................................  2

Not Reasonable ......................................................................................................  3

Assessment ....................................................................................................................  4

Getting Ready ................................................................................................................  4

Getting Started ...............................................................................................................  5

Initializing ........................................................................................................................ 6

Hail, Caesar! ..................................................................................................................  7

Parlez-vous français? ................................................................................................... 12

How to Submit .............................................................................................................  14

Step 1 of 2 ............................................................................................................ 14

Step 2 of 2 ............................................................................................................ 15

Questions? Head to CS50 Discuss1 or join classmates at office hours2!

Objectives

• Become better acquainted with functions and libraries.

• Dabble in cryptography.

Recommended Reading

• Pages 11 – 14 and 39 of http://www.howstuffworks.com/c.htm.

• Chapters 6, 7, 10, 17, 19, 21, 22, 30, and 32 of Absolute Beginner’s Guide to C.

• Chapters 7, 8, and 10 of Programming in C.

1  https://cs50.net/discuss
2  https://cs50.net/hours

https://cs50.net/discuss
https://cs50.net/hours
http://www.howstuffworks.com/c.htm
https://cs50.net/discuss
https://cs50.net/hours


Problem Set 2: Crypto

2

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on

quizzes is not permitted at all. Collaboration on the course’s final project is permitted to

the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly. If the course refers some

matter for disciplinary action and the outcome is punitive, the course reserves the right to

impose local sanctions on top of that outcome that may include an unsatisfactory or failing

grade for work submitted or for the course itself.

If you commit some act that is not reasonable but bring it to the attention of the course’s

heads within 72 hours, the course may impose local sanctions that may include an

unsatisfactory or failing grade for work submitted, but the course will not refer the matter

for further disciplinary action except in cases of repeated acts.

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at office hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.



Problem Set 2: Crypto

3

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.



Problem Set 2: Crypto

4

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

All students, whether or not taking the course for a letter grade, must ordinarily submit

this and all other problem sets to be eligible for a satisfactory grade unless granted an

exception in writing by the course’s heads.

Getting Ready

First, curl up with the below shorts on loops, functions, Caesar’s cipher, and command-

line arguments. If you happen to see (and are confused by!) char *  in these and other

shorts, know for now that char *  simply means string . But more on that soon!



Problem Set 2: Crypto

5

https://www.youtube.com/watch?v=HHmiHx7GGLE

Be sure you’re reasonably comfortable answering the below when it comes time to submit

this problem set’s form!

• How does a while loop differ from a do-while loop? When is the latter particularly useful?

• What does undeclared identifier  usually indicate if outputted by make  (or,

really, clang )?

• Why is Caesar’s cipher not very secure?

• What’s a function?

• Why bother writing functions when you can just copy and paste code as needed?

Next, take a self-paced tour through Week 2’s examples, the source code for which can be

found at http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/ and http://cdn.cs50.net/2015/

fall/lectures/2/w/src2w/, fast-forwarding through any programs with which you’re already

comfortable:

https://www.youtube.com/watch?v=9zoRoz8Pq4E&list=PLhQjrBD2T380sc-fXwl1sviA-

twxFduVU

You might also find these shorts on arrays, return values, and Vigenère’s cipher of interest

as well!

https://www.youtube.com/watch?v=7mOJN1c1JEo

Getting Started

Alright, here we go again!

Log into cs50.io3 and execute

update50

within a terminal window to make sure your workspace is up-to-date. If you somehow

closed your terminal window (and can’t find it!), make sure that Console is checked under

the View menu, then click the green, circled plus (+) in CS50 IDE’s bottom half, then select

New Terminal. If you need a hand, do just ask via CS50 Discuss4!

3  https://cs50.io/
4  https://cs50.net/discuss

https://www.youtube.com/watch?v=HHmiHx7GGLE
http://cdn.cs50.net/2015/fall/lectures/2/m/src2m/
http://cdn.cs50.net/2015/fall/lectures/2/w/src2w/
http://cdn.cs50.net/2015/fall/lectures/2/w/src2w/
https://www.youtube.com/watch?v=9zoRoz8Pq4E&list=PLhQjrBD2T380sc-fXwl1sviA-twxFduVU
https://www.youtube.com/watch?v=9zoRoz8Pq4E&list=PLhQjrBD2T380sc-fXwl1sviA-twxFduVU
https://www.youtube.com/watch?v=7mOJN1c1JEo
https://cs50.io/
https://cs50.net/discuss
https://cs50.io/
https://cs50.net/discuss


Problem Set 2: Crypto

6

Next, execute

mkdir ~/workspace/pset2

at your prompt in order to make a directory called pset2  in your workspace  directory.

Take care not to overlook the space between mkdir  and ~/workspace/pset2  or

any other character for that matter! Keep in mind that ~  denotes your home directory,

~/workspace  denotes a directory called workspace  therein, and ~/workspace/

pset2  denotes a directory called pset2  within ~/workspace .

Now execute

cd ~/workspace/pset2

to move yourself into (i.e., open) that directory. Your prompt should now resemble the

below.

username@ide50:~/workspace/pset2 $

If not, retrace your steps and see if you can determine where you went wrong. You can

actually execute

history

at the prompt to see your last several commands in chronological order if you’d like to do

some sleuthing. You can also scroll through the same one line at a time by hitting your

keyboard’s up and down arrows; hit Enter to re-execute any command that you’d like. If

still unsure how to fix, remember that CS50 Discuss5 is your friend!

All of the work that you do for this problem set must ultimately reside in your pset2

directory for submission.

Initializing

Alright, let’s get more comfortable with string .

5  https://cs50.net/discuss

https://cs50.net/discuss
https://cs50.net/discuss


Problem Set 2: Crypto

7

Write, in a file called initials.c , a program that prompts a user for their name

(using GetString  to obtain their name as a string ) and then outputs their initials in

uppercase with no spaces or periods, followed by a newline ( \n ) and nothing more. You

may assume that the user’s input will contain only letters (uppercase and/or lowercase)

plus single spaces between words. Folks like Joseph Gordon-Levitt , Conan

O’Brien , and David J. Malan  won’t be using your program. (If only!)

So that we can automate some tests of your code, your program must behave per the

examples below. Assumed that the underlined text is what some user has typed.

username@ide50:~/workspace/pset2 $ ./initials

Zamyla Chan

ZC

username@ide50:~/workspace/pset2 $ ./initials

robert thomas bowden

RTB

If you’d like to check the correctness of your program with check50 , you may execute

the below.

check50 2015.fall.pset2.initials initials.c

And if you’d like to play with the staff’s own implementation of initials , you may

execute the below.

~cs50/pset2/initials

Hail, Caesar!

Recall from David DiCiurcio’s short that Caesar’s cipher encrypts (i.e., scrambles in a

reversible way) messages by "rotating" each letter by k positions, wrapping around from

Z  to A  as needed (cf. http://en.wikipedia.org/wiki/Caesar_cipher). In other words, if p is

some plaintext (i.e., an unencrypted message), pi is the ith character in p, and k is a secret

key (i.e., a non-negative integer), then each letter, ci, in the ciphertext, c, is computed as:

ci = (pi + k) % 26

http://en.wikipedia.org/wiki/Caesar_cipher


Problem Set 2: Crypto

8

This formula perhaps makes the cipher seem more complicated than it is, but it’s really just

a nice way of expressing the algorithm precisely and concisely. And computer scientists

love precision and, er, concision.

For example, suppose that the secret key, k, is 13 and that the plaintext, p, is "Be sure

to drink your Ovaltine!" Let’s encrypt that p with that k in order to get the ciphertext, c, by

rotating each of the letters in p by 13 places, whereby:

Be sure to drink your Ovaltine!

becomes:

Or fher gb qevax lbhe Binygvar!

We’ve deliberately printed the above in a monospaced font so that all of the letters line up

nicely. Notice how O  (the first letter in the ciphertext) is 13 letters away from B  (the first

letter in the plaintext). Similarly is r  (the second letter in the ciphertext) 13 letters away

from e  (the second letter in the plaintext). Meanwhile, f  (the third letter in the ciphertext)

is 13 letters away from s  (the third letter in the plaintext), though we had to wrap around

from z  to a  to get there. And so on. Not the most secure cipher, to be sure, but fun to

implement!

Incidentally, a Caesar cipher with a key of 13 is generally called ROT13 (cf. http://

en.wikipedia.org/wiki/ROT13). In the real world, though, it’s probably best to use ROT26,

which is believed to be twice as secure6.

Anyhow, your next goal is to write, in caesar.c , a program that encrypts messages

using Caesar’s cipher. Your program must accept a single command-line argument: a

non-negative integer. Let’s call it k for the sake of discussion. If your program is executed

without any command-line arguments or with more than one command-line argument, your

program should yell at the user and return a value of 1  (which tends to signify an error)

immediately as via the statement below:

return 1;

6  http://www.urbandictionary.com/define.php?term=ROT26

http://en.wikipedia.org/wiki/ROT13
http://en.wikipedia.org/wiki/ROT13
http://www.urbandictionary.com/define.php?term=ROT26
http://www.urbandictionary.com/define.php?term=ROT26


Problem Set 2: Crypto

9

Otherwise, your program must proceed to prompt the user for a string of plaintext and then

output that text with each alphabetical character "rotated" by k positions; non-alphabetical

characters should be outputted unchanged. After outputting this ciphertext, your program

should exit, with main  returning 0 , as via the statement below:

return 0;

If you don’t explicitly return an int  from within main , 0  is actually returned for you

automatically. (Indeed, per its "return type," main  does need to return an int . But more

on that another time.) Now that you’re returning 1  explicitly to signify errors, it’s best to

return 0  (by convention) explicitly to signify success. Whereas 0  generally represents

success, any non- 0  int  generally represents an error. That way, you can represent

(gasp) upwards of four billion errors (since an int  is generally 32 bits)!

Anyhow, even though there exist only 26 letters in the English alphabet, you may not

assume that k will be less than or equal to 26; your program should work for all non-

negative integral values of k less than 231 - 26. (In other words, you don’t need to worry if

your program eventually breaks if the user chooses a value for k that’s too big or almost

too big to fit in an int . Now, even if k is greater than 26, alphabetical characters in

your program’s input should remain alphabetical characters in your program’s output. For

instance, if k is 27, A  should not become [  even though [  is 27 positions away from A

in ASCII; A  should become B , since 27 modulo 26 is 1, as a computer scientists might

say. In other words, values like k = 1 and k = 27 are effectively equivalent.

Your program must preserve case: capitalized letters, though rotated, must remain

capitalized letters; lowercase letters, though rotated, must remain lowercase letters.

Where to begin? Well, this program needs to accept a command-line argument, k, so this

time you’ll want to declare main  with:

int main(int argc, string argv[])

Recall that argv  is an "array" of strings. You can think of an array as row of gym lockers,

inside each of which is some value (and maybe some socks). In this case, inside each

such locker is a string . To open (i.e., "index into") the first locker, you use syntax like

argv[0] , since arrays are "zero-indexed." To open the next locker, you use syntax like

argv[1] . And so on. Of course, if there are n  lockers, you’d better stop opening lockers



Problem Set 2: Crypto

10

once you get to argv[n - 1] , since argv[n]  doesn’t exist! (That or it belongs to

someone else, in which case you still shouldn’t open it.)

And so you can access k with code like

string k = argv[1];

assuming it’s actually there! Recall that argc  is an int  that equals the number of strings

that are in argv , so you’d best check the value of argc before opening a locker that might

not exist! Ideally, argc  will be 2 . Why? Well, recall that inside of argv[0] , by default,

is a program’s own name. So argc  will always be at least 1 . But for this program you

want the user to provide a command-line argument, k , in which case argc  should be

2 . Of course, if the user provides more than one command-line argument at the prompt,

argc  could be greater than 2 , in which case it’s time for some yelling.

Now, just because the user types an integer at the prompt, that doesn’t mean their input

will be automatically stored in an int . Au contraire, it will be stored as a string  that

just so happens to look like an int ! And so you’ll need to convert that string  to an

actual int . As luck would have it, a function, atoi7, exists for exactly that purposes.

Here’s how you might use it:

int k = atoi(argv[1]);

Notice, this time, we’ve declared k  as an actual int  so that you can actually do some

arithmetic with it. Ah, much better. Incidentally, you can assume that the user will only

type integers at the prompt. You don’t have to worry about them typing, say, foo , just

to be difficult (even though the staff’s solution does catch such); atoi  will just return 0

in such cases.

Because atoi  is declared in stdlib.h , you’ll want to #include  that header file atop

your own code. (Technically, your code will compile without it there, since we already

#include  it in cs50.h . But best not to trust another library to #include  header files

you know you need.)

Okay, so once you’ve got k  stored as an int , you’ll need to ask the user for some

plaintext. Odds are CS50’s own GetString  can help you with that.

7  https://reference.cs50.net/stdlib.h/atoi

https://reference.cs50.net/stdlib.h/atoi
https://reference.cs50.net/stdlib.h/atoi


Problem Set 2: Crypto

11

Once you have both k  and some plaintext, it’s time to encrypt the latter with the former.

Recall that you can iterate over the characters in a string, printing each one at a time, with

code like the below:

for (int i = 0, n = strlen(p); i < n; i++)

{

    printf("%c", p[i]);

}

In other words, just as argv  is an array of strings, so is a string  an array of chars.

And so you can use square brackets to access individual characters in strings just as you

can individual strings in argv . Neat, eh? Of course, printing each of the characters in a

string one at a time isn’t exactly cryptography. Well, maybe technically if k is 0. But the

above should help you help Caesar implement his cipher! For Caesar!

Incidentally, you’ll need to #include  yet another header file in order to use strlen 8.

And Zamyla has some tips for you as well:

https://www.youtube.com/watch?v=V6IDxl-3WAA

So that we can automate some tests of your code, your program must behave per the

below. Assumed that the underlined text is what some user has typed.

username@ide50:~/workspace/pset2 $ ./caesar 13

Be sure to drink your Ovaltine!

Or fher gb qevax lbhe Binygvar!

Besides atoi , you might find some handy functions documented at https://

reference.cs50.net/ under ctype.h and stdlib.h. For instance, isdigit  sounds

interesting. And, with regard to wrapping around from Z  to A  (or z  to a ), don’t forget

about % , C’s modulo operator. You might also want to check out http://asciitable.com/,

which reveals the ASCII codes for more than just alphabetical characters, just in case you

find yourself printing some characters accidentally.

If you’d like to check the correctness of your program with check50 , you may execute

the below.

8  https://reference.cs50.net/string.h/strlen

https://reference.cs50.net/string.h/strlen
https://www.youtube.com/watch?v=V6IDxl-3WAA
https://reference.cs50.net/
https://reference.cs50.net/
http://asciitable.com/
https://reference.cs50.net/string.h/strlen


Problem Set 2: Crypto

12

check50 2015.fall.pset2.caesar caesar.c

And if you’d like to play with the staff’s own implementation of caesar , you may execute

the below.

~cs50/pset2/caesar

BTW, uggc://jjj.lbhghor.pbz/jngpu?i=bUt5FWLEUN0 .

Parlez-vous français?

Well that last cipher was hardly secure. Fortunately, Nate’s short on Vigenère’s cipher9,

there’s a more sophisticated algorithm out there. Suffice it to say it’s French, per http://

en.wikipedia.org/wiki/Vigen%C3%A8re_cipher. Though do not be mislead by the article’s

discussion of a tabula recta. Each ci can be computed with relatively simple arithmetic!

You do not need a two-dimensional array.

Vigenère’s cipher improves upon Caesar’s by encrypting messages using a sequence

of keys (or, put another way, a keyword). In other words, if p is some plaintext and k is

a keyword (i.e., an alphbetical string, whereby A  and a  represent 0, while Z  and z

represent 25), then each letter, ci, in the ciphertext, c, is computed as:

ci = (pi + kj) % 26

Note this cipher’s use of kj as opposed to just k. And recall that, if k is shorter than p, then

the letters in k must be reused cyclically as many times as it takes to encrypt p.

Your final challenge this week is to write, in vigenere.c , a program that encrypts

messages using Vigenère’s cipher. This program must accept a single command-line

argument: a keyword, k, composed entirely of alphabetical characters. If your program

is executed without any command-line arguments, with more than one command-

line argument, or with one command-line argument that contains any non-alphabetical

character, your program should complain and exit immediately, with main returning 1

(thereby signifying an error that our own tests can detect). Otherwise, your program must

proceed to prompt the user for a string of plaintext, p, which it must then encrypt according

9  https://youtu.be/9zASwVoshiM

https://youtu.be/9zASwVoshiM
http://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
http://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://youtu.be/9zASwVoshiM


Problem Set 2: Crypto

13

to Vigenère’s cipher with k, ultimately printing the result and exiting, with main  returning

0 .

As for the characters in k, you must treat A  and a  as 0, B  and b  as 1, … , and Z  and

z  as 25. In addition, your program must only apply Vigenère’s cipher to a character in p

if that character is a letter. All other characters (numbers, symbols, spaces, punctuation

marks, etc.) must be outputted unchanged. Moreover, if your code is about to apply the

jth character of k to the ith character of p, but the latter proves to be a non-alphabetical

character, you must wait to apply that jth character of k to the next alphabetical character in

p; you must not yet advance to the next character in k. Finally, your program must preserve

the case of each letter in p.

Not sure where to begin? As luck would have it, this program’s pretty similar to caesar !

Only this time, you need to decide which character in k to use as you iterate from character

to character in p.

And here’s Zamyla again with some tips:

https://www.youtube.com/watch?v=Uma2HZMPm2M

So that we can automate some tests of your code, your program must behave per the

below; highlighted in bold are some sample inputs.

username@ide50:~/workspace/pset2 ./vigenere bacon

Meet me at the park at eleven am

Negh zf av huf pcfx bt gzrwep oz

How to test your program, besides predicting what it should output, given some input?

Well, recall that we’re nice people. And so we’ve written a program called devigenere

that also takes one and only one command-line argument (a keyword) but whose job is to

take ciphertext as input and produce plaintext as output.

To use our program, execute

~cs50/pset2/devigenere k

at your prompt, where k  is some keyword. Presumably you’ll want to paste your program’s

output as input to our program; be sure, of course, to use the same key. Note that you do

not need to implement devigenere  yourself, only vigenere .

https://www.youtube.com/watch?v=Uma2HZMPm2M


Problem Set 2: Crypto

14

If you’d like to check the correctness of your program with check50 , you may execute

the below.

check50 2015.fall.pset2.vigenere vigenere.c

And if you’d like to play with the staff’s own implementation of vigenere , you may

execute the below.

~cs50/pset2/vigenere

How to Submit

Step 1 of 2

1. When ready to submit, log into CS50 IDE10.

2. Toward CS50 IDE’s top-left corner, within its "file browser" (not within a terminal

window), control-click or right-click your initials.c  file (that’s within your pset2

directory) and then select Download. You should find that your browser has

downloaded initials.c .

3. Repeat for caesar.c .

4. Repeat for vigenere.c .

5. In a separate tab or window, log into CS50 Submit11, logging in if prompted.

6. Click Submit toward the window’s top-left corner.

7. Under Problem Set 2 on the screen that appears, click Upload New Submission.

8. On the screen that appears, click Add files…. A window entitled Open Files should

appear.

9. Navigate your way to initials.c . Odds are it’s in your Downloads folder or

wherever your browser downloads files by default. Once you find initials.c , click

it once to select it, then click Open (or the like).

10.Click Add files… again, and a window entitled Open Files should appear again.

10  https://cs50.io/
11  https://cs50.harvard.edu/submit

https://cs50.io/
https://cs50.harvard.edu/submit
https://cs50.io/
https://cs50.harvard.edu/submit


Problem Set 2: Crypto

15

11.Navigate your way to caesar.c  as before. Click it once to select it, then click Open

(or the like).

12.Navigate your way to vigenere.c  as before. Click it once to select it, then click

Open (or the like).

13.Click Start upload to upload all of your files at once to CS50’s servers.

14.On the screen that appears, you should see a window with No File Selected. If you

move your mouse toward the window’s lefthand side, you should see a list of the files

you uploaded. Click each to confirm the contents of each. (No need to click any other

buttons or icons.) If confident that you submitted the files you intended, consider your

source code submitted! If you’d like to re-submit different (or modified) files, simply

return to CS50 Submit12 and repeat these steps. You may re-submit as many times as

you’d like; we’ll grade your most recent submission, so long as it’s before the deadline.

Step 2 of 2

Head to https://forms.cs50.net/2015/fall/psets/2/ where a short form awaits. Once you

have submitted that form (as well as your source code), you are done! If you end up

resubmitting your files (per step 1 of 1), no need to resubmit the form.

This was Problem Set 2.

12  https://cs50.harvard.edu/submit

https://cs50.harvard.edu/submit
https://forms.cs50.net/2015/fall/psets/2/
https://cs50.harvard.edu/submit

	Problem Set 2: Crypto
	Table of Contents
	Objectives
	Recommended Reading
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Getting Ready
	Getting Started
	Initializing
	Hail, Caesar!
	Parlez-vous français?
	How to Submit
	Step 1 of 2
	Step 2 of 2


