
1

Problem Set 6: Web Server

This is CS50. Harvard University. Fall 2015.

Table of Contents

Objectives ... 1

Academic Honesty ... 1

Reasonable ... 2

Not Reasonable .. 3

Assessment .. 4

Getting Ready .. 4

Getting Started ... 5

server.c .. 11

What To Do .. 17

lookup .. 17

parse ... 18

load .. 19

indexes .. 20

How to Submit ... 20

Step 1 of 2 .. 20

Step 2 of 2 .. 21

Objectives

• Become familiar with HTTP.

• Apply familiar techniques in unfamiliar contexts.

• Transition from C to web programming.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

Problem Set 6: Web Server

2

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on

quizzes is not permitted at all. Collaboration on the course’s final project is permitted to

the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly. If the course refers some

matter for disciplinary action and the outcome is punitive, the course reserves the right to

impose local sanctions on top of that outcome that may include an unsatisfactory or failing

grade for work submitted or for the course itself.

If you commit some act that is not reasonable but bring it to the attention of the course’s

heads within 72 hours, the course may impose local sanctions that may include an

unsatisfactory or failing grade for work submitted, but the course will not refer the matter

for further disciplinary action except in cases of repeated acts.

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at office hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

Problem Set 6: Web Server

3

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

Problem Set 6: Web Server

4

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

All students, whether or not taking the course for a letter grade, must ordinarily submit

this and all other problem sets to be eligible for a satisfactory grade unless granted an

exception in writing by the course’s heads.

Getting Ready

First, join David (hey, that’s me) for a tour of HTTP, the "protocol" via which web browsers

and web servers communicate.

https://www.youtube.com/watch?v=hU4XuBe50K4

Next, consider reviewing some of these examples from Week 7, via which we introduced

HTML, the language in which web pages are written.

https://www.youtube.com/watch?v=1TgTA4o_AM8

And also some of these examples, via which we introduced CSS, the language with which

web pages can be stylized.

https://www.youtube.com/watch?v=hU4XuBe50K4
https://www.youtube.com/watch?v=1TgTA4o_AM8

Problem Set 6: Web Server

5

https://www.youtube.com/watch?v=TKZlfZDF8Y4

Next, consider reviewing some of these examples, via which we introduced HTML forms,

which we used to submit GET queries to Google.

https://www.youtube.com/watch?v=RQ2_TIXBo00

For another perspective altogether, join Daven for a tour of HTML too. Don’t miss the

bloopers at the end!

https://www.youtube.com/watch?v=dM5V1epAbSs

Finally, join Joseph (and Rob) for a closer look at CSS.

https://www.youtube.com/watch?v=kg0ZOmUREwc

Getting Started

Log into CS50 IDE1 and, in a terminal window, execute

update50

to ensure that your workspace is up-to-date!

Like Problem Set 5, this problem set comes with some distribution code that you’ll need

to download before getting started. Go ahead and execute

cd ~/workspace

in order to navigate to your ~/workspace directory. Then execute

wget http://cdn.cs50.net/2015/fall/psets/6/pset6/pset6.zip

in order to download a ZIP (i.e., compressed version) of this problem set’s distro. If you

then execute

ls

1 https://cs50.io/

https://www.youtube.com/watch?v=TKZlfZDF8Y4
https://www.youtube.com/watch?v=RQ2_TIXBo00
https://www.youtube.com/watch?v=dM5V1epAbSs
https://www.youtube.com/watch?v=kg0ZOmUREwc
https://cs50.io/
https://cs50.io/

Problem Set 6: Web Server

6

you should see that you now have a file called pset6.zip in your ~/workspace

directory. Unzip it by executing the below.

unzip pset6.zip

If you again execute

ls

you should see that you now also have a pset6 directory. You’re now welcome to delete

the ZIP file with the below.

rm -f pset6.zip

Now dive into that pset6 directory by executing the below.

cd pset6

Now execute

tree

(which is a hierarchical, recursive variant of ls), and you should see that the directory

contains the below.

.

├── Makefile

├── public

│ ├── cat.html

│ ├── cat.jpg

│ ├── favicon.ico

│ ├── hello.html

│ ├── hello.php

│ └── test

│ └── index.html

└── server.c

Problem Set 6: Web Server

7

Dang it, still C. But some other stuff too!

Go ahead and take a look at cat.html . Pretty simple, right? Looks like it has an img

tag, the value of whose src attribute is cat.jpg .

Next, take a look at hello.html . Notice how it has a form that’s configured to submit

via GET a text field called name to hello.php . Make sense? If not, try taking another

look at the walkthrough for search-0.html 2 from Week 7!

Now take a look at hello.php . Notice how it’s mostly HTML but inside its body is a

bit of PHP code:

<?= htmlspecialchars($_GET["name"]) ?>

The <?= notation just means "echo the following value here". htmlspecialchars ,

meanwhile, is just an attrociously named function whose purpose in life is to ensure that

special (even dangerous!) characters like < are properly "escaped" as HTML "entities."

See http://php.net/manual/en/function.htmlspecialchars.php for more details if curious.

Anyhow, $_GET is a "superglobal" variable inside of which are any HTTP parameters that

were passed via GET to hello.php . More specifically, it’s an "associative array" (i.e.,

hash table) with keys and values. Per that HTML form in hello.html , one such key

should be name ! But more on all that in a bit.

Now the fun part. Open up server.c .

Yup. You guessed it. The challenge ahead is to implement your own web server that knows

how to serve static content (i.e., files ending in .html , .jpg , et al.) and dynamic content

(i.e., files ending in .php).

Want to try out the staff’s solution before we dive into the distribution code? Execute the

below to download the latest version of the staff’s solution, as the version in CS50 IDE by

default is outdated. Note that the O in -O is a capitalized letter O , not a zero.

sudo wget -O ~cs50/pset6/server http://cdn.cs50.net/2015/fall/psets/6/pset6/

server

sudo chmod a+x ~cs50/pset6/server

2 https://youtu.be/RQ2_TIXBo00

https://youtu.be/RQ2_TIXBo00
http://php.net/manual/en/function.htmlspecialchars.php
https://youtu.be/RQ2_TIXBo00

Problem Set 6: Web Server

8

Then execute the below to run the staff’s implementation of server .

~cs50/pset6/server

You should see these instructions:

Usage: server [-p port] /path/to/root

Looks a bit complex, but that’s just a conventional way of saying:

• This program’s name is server .

• To specify a (TCP) port number on which server should listen for HTTP requests,

include -p as a command-line argument, followed by (presumably) a number. The

brackets imply that specifying a port is optional. (If you don’t specify, the program will

default to port 8080, which is required by CS50 IDE.)

• The last command-line argument to server should be the path to your server’s

"root" (the directory from which files will be served).

Let’s try it out. Execute the below from within your own ~/workspace/pset6 directory

so that the staff’s solution uses your own copy of public as its root.

~cs50/pset6/server public

You should see output like the below.

Using /home/ubuntu/workspace/pset6/public for server's root

Listening on port 8080

Toward the top-right corner of CS50 IDE, meanwhile, you should see your

workspace’s "fully qualified domain name," an address of the form ide50-

username.cs50.io , where username is your own username. Visit https://

ide50-username.cs50.io/ (where username is your own username) in another

tab. You should see a "directory listing" (i.e., an unordered list) of everything that’s in

public , yes? And if you click cat.jpg, you should see a happy cat?? If not, do just reach

out to classmates or staff for a hand!

Problem Set 6: Web Server

9

Incidentally, even though server is running on port 8080, CS50 IDE is "port-forwarding"

port 80 (which, recall, is browsers' default) to 8080 for you. That’s why you don’t need to

specify 8080 in the URL you just visited.

Anyhow, assuming you indeed saw a happy cat in that tab, you should also see

GET /cat.jpg HTTP/1.1

in your terminal window, which is the "request line" that your browser sent to the server

(which is being outputted by server via printf for diagnostics' sake). Below that you

should see all of the headers that your browser sent to server followed by

HTTP/1.1 200 OK

which is the server’s response to the browser (which is also being outputted by server

via printf for diagnostics' sake).

Next, just like I did in that short on HTTP, open up Chrome’s developer tools, per the

instructions at https://developer.chrome.com/devtools. Then, once open, click the tools'

Network tab, and then, while holding down Shift, reload the page.

Not only should you see Happy Cat again. You should also see the below in your terminal

window.

GET /cat.jpg HTTP/1.1

HTTP/1.1 200 OK

You might also see the below.

GET /favicon.ico HTTP/1.1

HTTP/1.1 200 OK

What’s going on if so? Well, by convention, a lot of websites have in their root directory a

favicon.ico file, which is a tiny icon that’s meant to be displayed a browser’s address

bar or tab. If you do see those lines in your terminal window, that just means Chrome is

guessing that your server, too, might have favicon.ico file, which it does!

https://developer.chrome.com/devtools

Problem Set 6: Web Server

10

Here’s a quick walkthrough if a demo might help.

https://www.youtube.com/watch?v=3dmp0ycKC5c

Alright, now try visiting https://ide50-username.cs50.io/cat.html . (Note the

.html instead of .jpg this time.) You should see Happy Cat again, possibly with a bit

of a margin around him (simply because of Chrome’s default CSS properties). If you look

at the developer tools' Network tab (possibly after reloading, if they weren’t still open),

you should see that Chrome first requested cat.html followed by cat.jpg , since the

latter, recall, was specified as the value of that img element’s src attribute that we saw

earlier in cat.html . To confirm as much, take a look at the developer tools' Elements

tab, wherein you’ll see a pretty-printed version of the HTML in cat.html . You can even

change it but only Chrome’s in-memory copy thereof. To change the actual file, you’d need

to do so in the usual way within CS50 IDE. Incidentally, you might find it interesting to

tinker with the developer tools' Styles tab, too. Even though this page doesn’t have any

CSS of its own, you can see and change (temporarily) Chrome’s default CSS properties

via that tab.

Okay, one last test. Try visiting https://ide50-username.cs50.io/hello.html .

Go ahead and input your name into the form and then submit it, as by clicking the

button or hitting Enter. You should find yourself at a URL like https://ide50-

username.cs50.io/hello.php?name=Alice (albeit with your name, not Alice’s,

unless your name is also Alice), where a personalized hello awaits! That’s what we mean

by "dynamic" content. By submitting that form, you provided input (i.e., your name) to

the server, which then generated output just for you. (That input was in the form of an

"HTTP parameter" called name , the value of which was your name.) Indeed, if you look at

the page’s source code (as via the developer tools' Elements tab), you’ll see your name

embedded within the HTML! By contrast, files like cat.jpg and cat.html (and even

hello.html) are "static" content, since they’re not dynamically generated.

Neat, eh?? Though odds are you’ll find it easier to test your own code via a command line

than with a browser. So let’s show you one other technique.

Open up a second terminal window and position it alongside your first. In the first terminal

window, execute

~cs50/pset6/server public

https://www.youtube.com/watch?v=3dmp0ycKC5c

Problem Set 6: Web Server

11

from within your own ~/workspace/pset6 directory, if the server isn’t already running.

Then, in the second terminal window, execute the below. (Note the http:// this time

instead of https:// .)

curl -i http://localhost:8080/

If you haven’t used curl before, it’s a command-line program with which you can send

HTTP requests (and more) to a server in order to see its responses. The -i flag tells

curl to include responses' HTTP headers in the output. Odds are, whilst debugging your

server, you’ll find it more convenient (and revealing!) to see all of that via curl than by

poking around Chrome’s developer tools.

Incidentally, take care not to request cat.jpg (or any binary file) via curl , else you’ll

see quite a mess! (You’re about to try, aren’t you.)

Unfortunately, your own copy of server.c isn’t quite so featureful as the staff’s

solution… yet! Let’s dive into that distribution code. Let’s start with a high-level overview.

https://www.youtube.com/watch?v=OnAItxJhS70

And now a lower-level tour through the code.

server.c

Open up server.c , if not open already. Let’s take a tour.

• Atop the file are a bunch of "feature test macro requirements" that allow us to use

certain functions that are declared (conditionally) in the header files further below.

• Defined next are a few constants that specify limits on HTTP requests sizes. We’ve

(arbitrarily) based their values on defaults used by Apache, a popular web server. See

http://httpd.apache.org/docs/2.2/mod/core.html if curious.

• Defined next is BYTES , a constant the specifies how many bytes we’ll eventually be

reading into buffers at a time.

• Next are a bunch of header files, followed by a definition of BYTE , which we’ve indeed

defined as an 8-bit char , followed by a bunch of prototypes.

• Finally, just above main are a just a few global variables.

https://www.youtube.com/watch?v=OnAItxJhS70
http://httpd.apache.org/docs/2.2/mod/core.html

Problem Set 6: Web Server

12

main

Let’s now walk through main .

• Atop main is an initialization of what appears to be a global variable called errno .

In fact, errno is defined in errno.h and is used by quite a few functions to indicate

(via an int), in cases of error, precisely which error has occurred. See man errno

for more details.

• Shortly thereafter is a call to getopt , which is a function declared in unistd.h that

makes it easier to parse command-line arguments. See man 3 getopt if curious.

Notice how we use getopt (and some Boolean expressions) to ensure that server

is used properly.

• Next notice the call to start (for which you may have noticed a prototype earlier).

More on that later.

• Below that is a declaration of a struct sigaction via which we’ll listen for SIGINT

(i.e., control-c), calling handler (a function defined by us elsewhere in server.c)

if heard.

• And then, after declaring some variables, main enters an infinite while loop.

Atop that loop, we first free any memory that might have been allocated by a

previous iteration of the loop.

We then check whether we’ve been "signalled" via control-c to stop the server.

Thereafter, within an if statment, is a call to connected , which returns true

if a client (e.g., a browser or even curl) has connected to the server.

After that is a call to parse , which parses a browser’s HTTP request, storing its

"absolute path" and "query" inside of two arrays that are passed into it by reference.

Next is a bunch of code that decodes that path (decoding any URL-encoded

characters like %20) and "resolves" the path to a local path, figuring out exactly

what file was requested on the server itself.

Below that, we ascertain whether that path leads to a directory or to a file and handle

the request accordingly, ultimately calling list , interpret , or transfer .

For directories (that don’t have an index.php or index.html file inside

them), we call list in order to display the directory’s contents.

Problem Set 6: Web Server

13

For files ending in .php (whose "MIME type" is text/x-php), we call

interpret .

For other (supported) files, we call transfer .

And that’s it for main ! Notice, though, that throughout main are a few uses of

continue , the effect of which is to jump back to the start of that infinite loop. Just before

continue in some cases, too, is a call to error (another function we wrote) with an

HTTP status code. Together, those lines allow the server to handle and respond to errors

just before returning its attention to new requests.

connected

Take a quick peek at connected below main . Don’t fret if unsure how this function

works, but do try to infer from the man pages for memset and accept !

error

Spend a bit more time looking through error , which is that function via which we respond

to browsers with errors (e.g., 404). This function’s a bit longer but perhaps has some more

familiar constructs. Before forging ahead, be sure you’re reasonably comfortable with how

this function works. (If curious, we’re using log10 simply to figure out how many digits,

and thus char s, code is.)

freedir

This function exists simply to facilitate freeing memory that’s allocated by a function called

scandir that we call in list .

handler

Thankfully, a short one! This function (called whenever a user hits control-c) essentially

tells main to call stop by setting signaled , a global variable, to true .

htmlspecialchars

This function, named identically to that PHP function we saw earlier, escapes characters

(e.g., < as <) that might otherwise "break" an HTML page. We call it from list , lest

some file or directory we’re listing have a "dangerous" character in its name.

Problem Set 6: Web Server

14

indexes

Uh oh, forgot to implement this one. About that…

interpret

This function enables the server to interpret PHP files. It’s a bit cryptic at first glance, but

in a nutshell, all we’re doing, upon receiving a request for, say, hello.php , is executing

a line like

QUERY_STRING="name=Alice" REDIRECT_STATUS=200 SCRIPT_FILENAME=/home/ubuntu/

workspace/pset6/public/hello.php php-cgi

the effect of which is to pass the contents of hello.php to PHP’s interpreter (i.e.,

php-cgi), with any HTTP parameters supplied via an "environment variable" called

QUERY_STRING . Via load (a function we wrote), we then read the interpreter’s

output into memory (via load). And then we respond to the browser with (dynamically

generated) output like:

HTTP/1.1 200 OK

X-Powered-By: PHP/5.5.9-1ubuntu4.12

Content-type: text/html

<!DOCTYPE html>

<html>

 <head>

 <title>hello</title>

 </head>

 <body>

 hello, Alice

 </body>

</html>

Even though the PHP code in hello.php is pretty-printed, it’s output isn’t quite as pretty.

(Take a look at hello.php . Can you deduce why?)

Problem Set 6: Web Server

15

Odds are you’re unfamiliar with popen . That function opens a "pipe" to a process (php-

cgi in our case), which provides us with a FILE pointer via which we can read that

process’s standard output (as though it were an actual file).

Notice how this function calls load , though, in order to read the PHP interpreter’s output

into memory.

list

Ah, here’s that function that generates a directory listing. Notice how much code it takes

to generate HTML using C, thanks to requisite memory management. (No more, come

PHP in Problem Set 7!)

load

Phew, a short one. Oh, wait.

lookup

Dang, another.

parse

Aaaaand, another. But the last of our TODOs!

reason

This function simply maps HTTP "status codes" (e.g., 200) to "reason phrases" (e.g.,

OK).

redirect

Ah, neat, this function redirects a client to another location (i.e., URL) by sending a status

code of 301 plus a Location header.

request

Ah, this one’s a biggie. But worth reading through. When the server receives a request

from a client, the server doesn’t know in advance how many characters the request will

comprise. And so this function iteratively reads bytes from the client, one buffer’s worth at

a time, calling realloc as needed to store the entire message (i.e., request).

Problem Set 6: Web Server

16

Notice this function’s use of pointers, dynamic memory allocation, pointer arithmetic, and

more. All somewhat familiar by now, but definitely a lot of it all in once place! Do try to

understand each and every line, if only for the practice. Ultimately, it keeps reading bytes

from the client until it encounters \r\n\r\n (aka CRLF CRLF), which, according to HTTP’s

spec, marks the end of a request’s headers.

If curious, know that read is quite like fread except that it reads from a "file

descriptor" (i.e., an int) instead of from a FILE pointer (i.e., FILE*). See its man

page for more.

Phew.

respond

It’s this function that actually sends to a client an HTTP response, given a status code,

heads, a body, and that body’s length. For instance, it’s this function that sends a response

like the below.

HTTP/1.1 200 OK

X-Powered-By: PHP/5.5.9-1ubuntu4.12

Content-type: text/html

<!DOCTYPE html>

<html>

 <head>

 <title>hello</title>

 </head>

 <body>

 hello, Alice

 </body>

</html>

Know that dprintf is quite like printf (or, really, fprintf) except that the former,

like read , writes to a "file descriptor" instead of to a FILE* .

start

Here’s that function that started it all (pun intended). Don’t worry if (even with man) you

don’t understand all of its lines, particularly the networking code. But do keep in mind that

Problem Set 6: Web Server

17

start is the function that configures the server to listen for connections on a particular

TCP port!

stop

And stop does the opposite, freeing all memory and ultimately compelling the server to

exit, without even returning control to main .

transfer

This function’s purpose in life is to transfer a file from the server to a client. Whereas

interpret handles dynamic content (generated by PHP scripts), transfer handles

static content (e.g., JPEGs). Notice how this function calls load in order to read some

file from disk.

urldecode

This function, also named after a PHP function, URL-decodes a string, converting special

characters like %20 back to their original values.

What To Do

Alright, let’s tackle those TODO s.

https://www.youtube.com/watch?v=BYdgkUkchbQ

lookup

Complete the implementation of lookup in such a way that it returns

• text/css for any file whose path ends in .css (or any capitalization thereof),

• text/html for any file whose path ends in .html (or any capitalization thereof),

• image/gif for any file whose path ends in .gif (or any capitalization thereof),

• image/x-icon for any file whose path ends in .ico (or any capitalization

thereof),

• image/jpeg (not image/jpg) for any file whose path ends in .jpg (or any

capitalization thereof),

https://www.youtube.com/watch?v=BYdgkUkchbQ

Problem Set 6: Web Server

18

• text/javascript for any file whose path ends in .js (or any capitalization

thereof),

• text/x-php for any file whose path ends in .php (or any capitalization thereof),

or

• image/png for any file whose path ends in .png (or any capitalization thereof), or

• NULL otherwise.

Odds are you’ll find functions like strcasecmp , strcpy , and/or strrchr of help!

parse

Complete the implementation of parse in such a way that the function parses

(i.e., iterates over) line , extracting its absolute-path and query and storing them at

abs_path and query , respectively.

Here’s how.

abs_path

Per 3.1.1 of http://tools.ietf.org/html/rfc7230, a request-line is defined as

method SP request-target SP HTTP-version CRLF

wherein SP represents a single space () and CRLF represents \r\n . None of

method , request-target , and HTTP-version , meanwhile, may contain SP .

Per 5.3 of the same RFC, request-target , meanwhile, can take several forms, the

only one of which your server needs to support is

absolute-path ["?" query]

whereby absolute-path (which will not contain ?) must start with / and might

optionally be followed by a ? followed by a query , which may not contain " .

Ensure that request-line (which is passed into parse as line) is consistent with

these rules. If it is not, respond to the browser with 400 Bad Request and return false .

http://tools.ietf.org/html/rfc7230

Problem Set 6: Web Server

19

Even if request-line is consistent with these rules,

• if method is not GET , respond to the browser with 405 Method Not Allowed and

return false ;

• if request-target does not begin with / , respond to the browser with 501 Not

Implemented and return false ;

• if request-target contains a " , respond to the browser with 400 Bad Request

and return false ;

• if HTTP-version is not HTTP/1.1 , respond to the browser with 505 HTTP Version

Not Supported and return false ; or

Odds are you’ll find functions like strchr , strcpy , strncmp , strncpy , and/or

strstr of help!

If all is well, store absolute-path at the address in abs_path (which was also passed

into parse as an argument). You may assume that the memory to which abs_path

points will be at least of length LimitRequestLine + 1.

query

Store at the address in query the query substring from request-target . If that

substring is absent (even if a ? is present), then query should be "" , thereby

consuming one byte, whereby query[0] is '\0' . You may assume that the memory

to which query points will be at least of length LimitRequestLine + 1.

For instance, if request-target is /hello.php or /hello.php? , then query

should have a value of "" . And if request-target is /hello.php?q=Alice , then

query should have a value of q=Alice .

Odds are you’ll find functions like strchr , strcpy , strncpy , and/or strstr of help!

load

Complete the implementation of load in such a way that the function:

1. reads all available bytes from file ,

2. stores those bytes contiguously in dynamically allocated memory on the heap,

Problem Set 6: Web Server

20

3. stores the address of the first of those bytes in *content , and

4. stores the number of bytes in *length .

Note that content is a "pointer to a pointer" (i.e., BYTE**), which means that you

can effectively "return" a BYTE* to whichever function calls load by dereferencing

content and storing the address of a BYTE at *content . Meanwhile, length is a

pointer (i.e., size_t*), which you can also dereference in order to "return" a size_t

to whichever function calls load by dereferencing length and storing a number at

*length .

indexes

Complete the implementation of indexes in such a way that the function,

given a /path/to/a/directory , returns /path/to/a/directory/index.php

if index.php actually exists therein, or /path/to/a/directory/index.html if

index.html actually exists therein, or NULL . In the first of those cases, this function

should dynamically allocate memory on the heap for the returned string.

How to Submit

Step 1 of 2

1. When ready to submit, log into CS50 IDE3.

2. Toward CS50 IDE’s top-left corner, within its "file browser" (not within a terminal

window), control-click or right-click your pset6 folder and then select Download. You

should find that your browser has downloaded pset6.tar.gz , a "gzipped tarball"

that’s similar in spirit to a ZIP file.

3. In a separate tab or window, log into CS50 Submit4, logging in if prompted.

4. Click Submit toward the window’s top-left corner.

5. Under Problem Set 6 on the screen that appears, click Upload New Submission.

6. On the screen that appears, click Add files…. A window entitled Open Files should

appear.

3 https://cs50.io/
4 https://cs50.net/submit

https://cs50.io/
https://cs50.net/submit
https://cs50.io/
https://cs50.net/submit

Problem Set 6: Web Server

21

7. Navigate your way to pset6.tar.gz . Odds are it’s in your Downloads folder or

wherever your browser downloads files by default. Once you find pset6.tar.gz ,

click it once to select it, then click Open (or the like).

8. Click Start upload to upload all of your files at once to CS50’s servers.

9. On the screen that appears, you should see a window with No File Selected. If you

move your mouse toward the window’s lefthand side, you should see a list of the files

you uploaded. Click each to confirm the contents of each. (No need to click any other

buttons or icons.) If confident that you submitted the files you intended, consider your

source code submitted! If you’d like to re-submit different (or modified) files, simply

return to CS50 Submit5 and repeat these steps. You may re-submit as many times as

you’d like; we’ll grade your most recent submission, so long as it’s before the deadline.

Step 2 of 2

Head to https://forms.cs50.net/2015/fall/psets/6/ where a short form awaits. Once you

have submitted that form (as well as your source code), you are done! If you end up

resubmitting your files (per step 1 of 2), no need to resubmit the form.

This was Problem Set 6.

5 https://cs50.net/submit

https://cs50.net/submit
https://forms.cs50.net/2015/fall/psets/6/
https://cs50.net/submit

	Problem Set 6: Web Server
	Table of Contents
	Objectives
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Getting Ready
	Getting Started
	server.c
	main
	connected
	error
	freedir
	handler
	htmlspecialchars
	indexes
	interpret
	list
	load
	lookup
	parse
	reason
	redirect
	request
	respond
	start
	stop
	transfer
	urldecode

	What To Do
	lookup
	parse
	abs_path
	query

	load
	indexes

	How to Submit
	Step 1 of 2
	Step 2 of 2

