
This is CS50
Section, Week 3

TA: Andi Peng



Agenda

• Announcements
• GDB
• Sorts (selection, insertion, bubble, merge)
• Asymptotic Notation (O, Ω)
• Binary Search
• pset3



Announcements

• Grading
• Commenting
• Make sure to test your code with Check50!
• Postmortems
• Late psets will be zeroed

• Office hours
• Come early in the week (woo Mondays)
• Come prepared to ask questions

• Quiz 0: October 14 or 15



GDB

Up to now, we’ve been debugging using printf statements…



GDB

Your new best friend!

• Set a breakpoint
• Next
• Step over
• Step into



Selection Sort

Algorithm

1. Find the smallest unsorted value

2. Swap that value with the first unsorted value 

3. Repeat from Step 1 if there are still unsorted items



25
410 2 3

UnsortedSorted

3 6 4

All	values	start	as	Unsorted



25
410 2 3

UnsortedSorted

3 6 4
Swap

First	pass:	
2	is	smallest,	swap	with	3



52 3
410 2 3

UnsortedSorted

6 4

Swap

Second	pass:	
3	is	smallest,	swap	with	5



62 3 5
410 2 3

UnsortedSorted

4

Third	pass:	
4	is	smallest,	swap	with	5

Swap



4 62 3
410 2 3

UnsortedSorted

5

Fourth	pass:	
5	is	smallest,	swap	with	6

Swap



4 52 3
410 2 3

UnsortedSorted

6

Fifth	pass:	
6	is	the	only	value	left,	done!



Pseudocode Time!



for	i =	0	to	n	- 1
min	=	i
for	j	=	i to	n	- 1
if	array[j +	1]	<	array[min]

min	=	j +	1;
if	min	!=	i

swap	array[min]	and	array[i]



What's	the	best	case	runtime	of	
selection	sort?

What's	the	worst	case	runtime	of	
selection	sort?

What's	the	expected	runtime	of	
selection	sort?

● Lin



Bubble Sort

Algorithm

• 1. Step through entire list, swapping adjacent values if not 
in order

• 2. Repeat from step 1 if any swaps have been made



8 6
2 3

4
10

2



84

46

2 3

4
10

8 6 2
2 310

8 2

6
2 310

2

First	pass:	3	swaps



3

6

4 826
210

6 824
2 310

2 84
2 310

Second	pass:	2	swaps



Third	pass:	1	swap	

3

6

2 864
210

4 862
2 310

4 82
2 310



Fourth	pass:	0	swaps	

3

6

4 862
210

4 862
2 310

4 82
2 310



initialize	counter
do
{

set	counter	to	0

iterate	through	entire	array
if	array[n]	>	array[n+1]

swap	them
increment	counter

}
while (counter	>	0)



What's	the	worst	case	runtime	of	
bubble	sort?

What's	the	best	case	runtime	of	
bubble	sort?

● Lin



Insertion Sort

Algorithm

• 1. Data is divided into sorted and unsorted portions

• 2. One by one, the unsorted values are inserted into their 
appropriate positions in the sorted subarray



25
410 2 3

UnsortedSorted

3 6 4

All	values	start	as	Unsorted



25
410 2 3

UnsortedSorted

3 6 4

Add	first	value	to	Sorted



25
410 2 3

UnsortedSorted

3 6 4

5	>	3	
insert	5	to	right	of	3	



25
410 2 3

UnsortedSorted

3 6 4

2	<	5	and	2	<	3
shift	3	and	5

insert	2	to	left	of	3



53
410 2 3

UnsortedSorted

2 6 4

6	>	5
insert	6	to	right	of	5	



53
410 2 3

UnsortedSorted

2 6 4

4	<	6,	4	<	5,	and	4	>	3
shift	5	and	6	

insert	4	to	right	of	3



For	each	unsorted	element	n:

1.	Determine	where	in	sorted	portion	of	the	list	to	
insert	n

2.	Shift	sorted	elements	rightwards	as	necessary	to	
make	room	for	n

3.	Insert	n	into	sorted	portion	of	the	list



for	i	=	0	to	n	- 1
element	=	array[i]
j	=	i
while	(j	>	0	and	array[j	- 1]	>	element)

array[j]	=	array[j	- 1]
j	=	j	- 1

array[j]	=	element



What's	the	worst	case	runtime	of	
insertion	sort?

What's	the	best	case	runtime	of	
insertion	sort?

● Lin



What’s the difference 
between these three 
types of sorts?



Merge Sort

Algorithm

• 1. Divide an unsorted array in two 
• 2. Sort the two halves of that array recursively



On	input	of	n	elements:
If	n	<	2

Return.
Else

Sort	left	half	of	elements.
Sort	right	half	of	elements.
Merge	sorted	halves.



3 25 46
253 46

1
1



Halve	until	each	subarray	is	size	1

4

3 25 46
253 46

64
253

53

1

1
1

1
6

2



Merge	Sorted	Halves

14
6453

53
532

6
641

32 51 4 6

12
2



sort	(int	array[],	int start,	int end)
{
if (end	>	start)

{
int middle	=	(start	+	end)	/	2;

sort(array,	start,	middle);
sort(array,	middle	+	1,	end);

merge(array,	start,	middle,	middle	+	1,	end);
}

}



What's	the	best	case	runtime	of	merge	
sort?

What's	the	worst	case	runtime	of	
merge	sort?

What's	the	expected	runtime	of	merge	
sort?

● Lin





Bubble	Sort

O
Ω
Θ

Selection	SortInsertion	Sort Merge	
Sort

n2

n n nlogn
nlogn

nlognn2

n2

n2

n2



Searching

• Linear search: search every element of a list

• Binary Search: Divide and Conquer!



Searching

• Linear search: search every element of a list

• Binary Search: Divide and Conquer!



Binary	Search





3

75

Does	the	array	contain	7?
Lin

9
10 2 4

1 3
5 6

106



Is	array[3]	==	7?
Is	array[3]	<	7?
Is	array[3]	>	7?

Lin

3

75 9
10 2 4

1 3
5 6

106



Is	array[5]	==	7?
Is	array[5]	<	7?
Is	array[5]	>	7?

Lin

3

75 9
10 2 4

1 3
5 6

106



Is	array[4]	==	7?
Is	array[4]	<	7?
Is	array[4]	>	7?

Lin

3

75 9
10 2 4

1 3
5 6

106



Pseudocode Time!

bool search(int value, int values[], int n)

binary search on values[] of size n, searching for 
value



Pset3: The Game of Fifteen

Find
• generate.c
• find.c
• helpers.c

• Linear search
• Sort
• Binary search



Pset3: The Game of Fifteen

Fifteen
• fifteen.c

• 2-dimensional 
array



Pset3: The Game of Fifteen

Init()

• Create a board with numbers 15-1
• Understand how to put a tile onto the 

board at a specific place
• Do the 1-2 switch if needed at the end



Pset3: The Game of Fifteen

Draw()

• Understand how to get the value of the 
board at a specific location

• Iterate over board and print values
• Make sure to check if the board is 

returning a number or a blank!



Pset3: The Game of Fifteen

Move()
• Understand that a parameter (user input) 

is determining which block to move 
• Figure out how to get the direction that the 

tile can move, and if it can’t move it return 
ILLEGAL

• Perhaps think about creating a function 
that actually moves the pieces



Pset3: The Game of Fifteen

Won()
• We know what every tile is supposed to 

be
• Iterate over the board and check to see if 

all the values are correct
• Think about initializing a counter to check 

the correctness of each value with a loop


