
1

Problem Set 0: Scratch

This is CS50. Harvard University. Fall 2014.

Table of Contents

Objectives ... 1

Academic Honesty ... 1

Reasonable ... 2

Not Reasonable .. 3

Assessment .. 4

1001000 1001001 .. 4

Itching to Program? .. 5

How to Submit ... 7

Questions? Head to cs50.harvard.edu/discuss1 or join classmates at office hours2!

Objectives

• Understand how information can be represented digitally.

• Leverage some fundamental programming constructs.

• Design your own animation, game, or interactive art.

• Impress your friends.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

1 https://cs50.harvard.edu/discuss
2 https://cs50.harvard.edu/hours

https://cs50.harvard.edu/discuss
https://cs50.harvard.edu/hours
https://cs50.harvard.edu/discuss
https://cs50.harvard.edu/hours

Problem Set 0: Scratch

2

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on

quizzes is not permitted at all. Collaboration on the course’s final project is permitted to

the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly. If the course refers some

matter to the Administrative Board and the outcome is Admonish, Probation, Requirement

to Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local

sanctions on top of that outcome that may include an unsatisfactory or failing grade for

work submitted or for the course itself.

If you commit some act that is not reasonable but bring it to the attention of the course’s

heads within 72 hours, the course may impose local sanctions that may include an

unsatisfactory or failing grade for work submitted, but the course will not refer the matter

to the Administrative Board.

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at Office Hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

Problem Set 0: Scratch

3

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution in CS50 Vault to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

Problem Set 0: Scratch

4

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Assessment

Your work on this problem set will be evaluated along two axes primarily.

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code free of bugs?

All students, whether taking the course SAT/UNS or for a letter grade, must ordinarily

submit this and all other problem sets to be eligible for a satisfactory grade unless granted

an exception in writing by the course’s heads.

1001000 1001001

First curl up with Nate’s short on binary, if not too familiar:

https://www.youtube.com/watch?v=hacBFrgtQjQ

And next with Nate’s short on ASCII:

https://www.youtube.com/watch?v=UPlR4eMMCmI

Consider these questions rhetorical for now, but odds are they’ll come up again! Not to

worry if the answers aren’t obvious at first. They’re meant to induce a bit of thought! Week

0’s first lecture and Nate’s videos should provide you with the building blocks (daresay

inputs!) with which to solve these problems.

• How do you represent the (decimal) integer 50 in binary?

• How many bits must be "flipped" (i.e., changed from 0 to 1 or from 1 to 0) in order to

capitalize a lowercase a that’s represented in ASCII?

https://www.youtube.com/watch?v=hacBFrgtQjQ
https://www.youtube.com/watch?v=UPlR4eMMCmI

Problem Set 0: Scratch

5

• How do you represent the (decimal) integer 50 in, oh, "hexadecimal," otherwise known

as "base-16"? Know that decimal is considered "base-10" (since it employs 10 digits, 0

through 9), and binary is considered "base-2" (since it employs 2 digits, 0 and 1). Infer

from those base systems how to represent base-16! (We’ll see base-16 again in the

context of graphics and web design.)

Incidentally, ever wonder what that big machine is by the stairs in the Science Center? It’s

the Harvard Mark I3, one of the world’s earliest (electro-mechanical) computers, whose

purpose was, well, to compute (albeit slowly by today’s standards)! You might enjoy this

tour by Prof. Harry Lewis4:

https://www.youtube.com/watch?v=4ObouwCHk8w

Itching to Program?

Head to http://scratch.mit.edu/ and sign up for an account on MIT’s website by clicking Join

Scratch atop the page. Any username (that’s available) is fine, but take care to remember

it and your choice of password.

Then head to http://scratch.mit.edu/help/ and take note of the resources available to you

before you dive into Scratch itself. In particular, you might want to skim the Getting Started

Guide5.

Next head to http://scratch.mit.edu/projects/26329354/ to see Pikachu’s Pastry Catch by

Gabe Walker. Click the blue square above the game’s top-left corner if you’d like to full-

screen the user interface (UI). Then click the green flag. Per Gabe’s instructions, as soon

as you hit your keyboard’s space bar, the game will begin! Feel free to procrastinate a

bit. And if you’d like to try out Ivy’s Hardest Game, by Carlos Peña-Lobel, head to http://

scratch.mit.edu/projects/26329347/.

If you’ve no experience (or comfort) whatsoever with programming, rest assured that

Gabe’s and Carlos’s projects are more complex than what we expect for this first problem

set. (Click See inside in Scratch’s top-right corner to look at each project’s underlying

"implementation details.") But they do reveal what you can do with Scratch.

3 http://en.wikipedia.org/wiki/Harvard_Mark_I
4 http://lewis.seas.harvard.edu/
5 http://scratch.mit.edu/scratchr2/static/__1378420408__//pdfs/help/Getting-Started-Guide-Scratch2.pdf

http://en.wikipedia.org/wiki/Harvard_Mark_I
http://lewis.seas.harvard.edu/
https://www.youtube.com/watch?v=4ObouwCHk8w
http://scratch.mit.edu/
http://scratch.mit.edu/help/
http://scratch.mit.edu/scratchr2/static/__1378420408__//pdfs/help/Getting-Started-Guide-Scratch2.pdf
http://scratch.mit.edu/scratchr2/static/__1378420408__//pdfs/help/Getting-Started-Guide-Scratch2.pdf
http://scratch.mit.edu/projects/26329354/
http://scratch.mit.edu/projects/26329347/
http://scratch.mit.edu/projects/26329347/
http://en.wikipedia.org/wiki/Harvard_Mark_I
http://lewis.seas.harvard.edu/
http://scratch.mit.edu/scratchr2/static/__1378420408__//pdfs/help/Getting-Started-Guide-Scratch2.pdf

Problem Set 0: Scratch

6

In fact, for a gentler introduction to Scratch (and programming more generally), you might

want to review some of the examples that we looked at in Week 0’s second lecture and take

a look at a few more, the "source code" for which can be found at http://scratch.mit.edu/

studios/522341/. Allow me to take you on a tour, though feel free to forge ahead on your

own if you’d prefer:

https://www.youtube.com/watch?

v=tveoFN0NHE0&list=PLhQjrBD2T383nc2LUdF5XWbyrsqiYy4nq

And you might also want to watch Allison’s short on Scratch:

https://www.youtube.com/watch?v=52JoFF4HMA4

Feel free to download the source code for a few more projects from http://scratch.mit.edu/

explore/projects/all/ or elsewhere. For each program, run it to see how it works overall and

then look over its scripts to understand how it works underneath the hood. Feel free to

make changes to scripts and observe the effects. Once you can say to yourself, "Okay, I

think I get this," you’re ready to proceed.

Now it’s time to choose your own adventure! Your mission is, quite simply, to have fun with

Scratch and implement a project of your choice (be it an animation, a game, interactive

art, or anything else), subject only to the following requirements.

• Your project must have at least two sprites, at least one of which must resemble

something other than a cat.

• Your project must have at least three scripts total (i.e., not necessarily three per sprite).

• Your project must use at least one condition, one loop, and one variable.

• Your project must use at least one sound.

• Your project should be more complex than most of those demonstrated in lecture (many

of which, though instructive, were quite short) but it can be less complex than, say,

Pikachu’s Pastry Catch and Ivy’s Hardest Game. As such, your project should probably

use a few dozen puzzle pieces overall.

Feel free to peruse additional projects online for inspiration, but your own project should

not be terribly similar to any of them. Try to think of an idea on your own, and then set out

to implement it. But don’t try to implement the entirety of your project all at once: pluck off

one piece at a time. Gabe, for instance, probably implemented just one pastry first, before

he moved onto the game’s other sprites. And Carlos probably implemented Yale before

http://scratch.mit.edu/studios/522341/
http://scratch.mit.edu/studios/522341/
https://www.youtube.com/watch?v=tveoFN0NHE0&list=PLhQjrBD2T383nc2LUdF5XWbyrsqiYy4nq
https://www.youtube.com/watch?v=tveoFN0NHE0&list=PLhQjrBD2T383nc2LUdF5XWbyrsqiYy4nq
https://www.youtube.com/watch?v=52JoFF4HMA4
http://scratch.mit.edu/explore/projects/all/
http://scratch.mit.edu/explore/projects/all/

Problem Set 0: Scratch

7

he moved on to implementing MIT. In other words, take baby steps: write a bit of code

(i.e., drag and drop a few puzzle pieces), test, write a bit more, test, and so forth.

If, along the way, you find it too difficult to implement some feature, try not to fret; alter

your design or work around the problem. If you set out to implement an idea that you find

fun, you should not find it hard to satisfy this problem set’s requirements.

Alright, off you go. Make us proud!

Not quite sure how to begin? Feeling a bit overwhelmed? Not to worry. Join Zamyla for a

walkthrough of this problem set, if you’d like more of a tour:

https://www.youtube.com/watch?v=697pD31GCZg

Incidentally, if you don’t have the best Internet access, you’re welcome to download

Scratch’s "offline editor" (which I used in Week 0’s second lecture) at http://scratch.mit.edu/

scratch2download/. But when done with your project offline, be sure to upload it to your

account at http://scratch.mit.edu/ via File > Share to website in the offline editor.

Once finished with your project, click See project page in Scratch’s top-right corner.

Ensure your project has a title (in Scratch’s top-left corner), some instructions (in Scratch’s

top-right corner), and some notes and/or credits (in Scratch’s bottom-right corner). Then

click Share in Scratch’s top-right corner so that others (e.g., your TF!) can see your project.

Finally, take note of the URL in your browser’s address bar. That’s your project’s URL on

MIT’s website, and you’ll need to know it later.

Oh, and if you’d like to exhibit your project in Spring 2015’s studio, head to http://

scratch.mit.edu/studios/884132/, then click Add projects, and paste in your own project’s

URL.

Incidentally, if curious to learn more about the design of Scratch itself, you might like this

segment with our friends from MIT’s Media Lab:

https://www.youtube.com/watch?v=iLSBUKs4AYU

How to Submit

To submit this problem set, visit https://forms.cs50.net/2015/spring/psets/0/. You’ll find

that a few questions await. Be extra-sure that your answers are correct, particularly your

project’s URL on MIT’s website, lest we overlook your submission!

https://www.youtube.com/watch?v=697pD31GCZg
http://scratch.mit.edu/scratch2download/
http://scratch.mit.edu/scratch2download/
http://scratch.mit.edu/
http://scratch.mit.edu/studios/884132/
http://scratch.mit.edu/studios/884132/
https://www.youtube.com/watch?v=iLSBUKs4AYU
https://forms.cs50.net/2015/spring/psets/0/

Problem Set 0: Scratch

8

CS50 collects quite a bit of data for research purposes. Please forgive the length of this

first problem set’s form! In total, the form will probably take 30 or more minutes to fill out.

Not to worry if you finish shortly after the problem set’s deadline, so long as you start before

the deadline. Future problem sets' forms will be much quicker!

This was Problem Set 0.

	Problem Set 0: Scratch
	Table of Contents
	Objectives
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	1001000 1001001
	Itching to Program?
	How to Submit

